配方计算器2.0
This commit is contained in:
@@ -1,36 +1,240 @@
|
|||||||
import optimize_feed
|
import pulp
|
||||||
|
import pandas as pd
|
||||||
|
from tabulate import tabulate
|
||||||
|
import os
|
||||||
|
|
||||||
# 示例调用
|
|
||||||
if __name__ == "__main__":
|
def calculate_nutrients_from_formula(formula_proportions, ingredients):
|
||||||
# 原料数据(加工后,单位:%或MJ/kg,价格元/吨)
|
"""
|
||||||
ingredients = {
|
计算市面配方营养总量,作为需求校准
|
||||||
'构树叶': {'蛋白': 15, '能量': 9, '纤维': 10, '赖氨酸': 0.5, '蛋氨酸': 0.1, '钙': 1.5, '磷': 0.2, '价格': 600},
|
:param formula_proportions: 配方比例字典,如 {'玉米': 0.59, '豆粕': 0.15}
|
||||||
'玉米胚芽': {'蛋白': 11, '能量': 13, '纤维': 7, '赖氨酸': 0.4, '蛋氨酸': 0.2, '钙': 0.1, '磷': 0.3,
|
:param ingredients: 原料数据字典,含营养值/价格
|
||||||
'价格': 1700},
|
:return: 营养总量字典,如 {'蛋白': 17.76, '能量': 11.56}
|
||||||
'麦麸': {'蛋白': 15, '能量': 10, '纤维': 12, '赖氨酸': 0.4, '蛋氨酸': 0.2, '钙': 0.1, '磷': 1.0, '价格': 1300},
|
"""
|
||||||
'米糠': {'蛋白': 13, '能量': 11, '纤维': 10, '赖氨酸': 0.4, '蛋氨酸': 0.2, '钙': 0.1, '磷': 1.5, '价格': 1100},
|
nutrients = list(set(key for ing in ingredients.values() for key in ing if key not in ['价格']))
|
||||||
'牧草': {'蛋白': 17, '能量': 8.5, '纤维': 20, '赖氨酸': 0.6, '蛋氨酸': 0.2, '钙': 1.2, '磷': 0.3, '价格': 800},
|
total_nutrients = {}
|
||||||
'玉米': {'蛋白': 9, '能量': 13.5, '纤维': 2.5, '赖氨酸': 0.3, '蛋氨酸': 0.17, '钙': 0.02, '磷': 0.3,
|
for nut in nutrients:
|
||||||
'价格': 2367},
|
total = sum(formula_proportions.get(i, 0) * ingredients.get(i, {}).get(nut, 0) for i in formula_proportions)
|
||||||
'豆粕': {'蛋白': 46, '能量': 10.5, '纤维': 4, '赖氨酸': 2.8, '蛋氨酸': 0.6, '钙': 0.3, '磷': 0.7, '价格': 3300},
|
total_nutrients[nut] = round(total, 2)
|
||||||
'植物油': {'蛋白': 0, '能量': 36, '纤维': 0, '赖氨酸': 0, '蛋氨酸': 0, '钙': 0, '磷': 0, '价格': 7500},
|
return total_nutrients
|
||||||
'赖氨酸': {'蛋白': 78, '能量': 0, '纤维': 0, '赖氨酸': 78, '蛋氨酸': 0, '钙': 0, '磷': 0, '价格': 15000},
|
|
||||||
'蛋氨酸': {'蛋白': 99, '能量': 0, '纤维': 0, '赖氨酸': 0, '蛋氨酸': 99, '钙': 0, '磷': 0, '价格': 25000},
|
|
||||||
'预混料': {'蛋白': 0, '能量': 0, '纤维': 0, '赖氨酸': 0, '蛋氨酸': 0, '钙': 10, '磷': 5, '价格': 3000}
|
def calculate_cost_from_formula(formula_proportions, ingredients):
|
||||||
|
"""
|
||||||
|
计算市面配方成本,作为参考
|
||||||
|
:param formula_proportions: 配方比例字典,如 {'玉米': 0.59}
|
||||||
|
:param ingredients: 原料数据字典,含价格
|
||||||
|
:return: 成本字典,含总价格和一斤价格
|
||||||
|
"""
|
||||||
|
total_price = sum(
|
||||||
|
formula_proportions.get(i, 0) * ingredients.get(i, {}).get('价格', 0) for i in formula_proportions)
|
||||||
|
return {
|
||||||
|
'总价格': round(total_price, 2),
|
||||||
|
'一斤饲料价格': round(total_price / 2000, 2) # 吨=2000斤
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def optimize_feed(requirements, ingredients, result_fields, optimization_type='min'):
|
||||||
|
"""
|
||||||
|
优化饲料配方,计算最低/最高目标值的原料比例
|
||||||
|
:param requirements: 猪营养需求字典,如 {'蛋白_下限': 17, '能量_下限': 12.5, '纤维_上限': 6}
|
||||||
|
:param ingredients: 原料数据字典,如 {'构树叶_发酵': {'蛋白': 15, '能量': 9, '纤维': 15, '价格': 600}}
|
||||||
|
:param result_fields: 结果字段列表,如 ['比例', '成本']
|
||||||
|
:param optimization_type: 'min'(最小化,如成本)或 'max'(最大化,如消化率)
|
||||||
|
:return: 字典,含结果字段和值,如 {'构树叶_发酵': {'比例': 14.29, '成本': 85.74}, '总价格': 1989.12}
|
||||||
|
"""
|
||||||
|
sense = pulp.LpMinimize if optimization_type == 'min' else pulp.LpMaximize
|
||||||
|
model = pulp.LpProblem("Feed_Optimization", sense)
|
||||||
|
|
||||||
|
# 决策变量:每种原料比例(0-1,单位:比例)
|
||||||
|
x = pulp.LpVariable.dicts("比例", ingredients, lowBound=0, upBound=1)
|
||||||
|
|
||||||
|
# 目标函数:最小化总价格(纯价格,无额外权重)
|
||||||
|
model += pulp.lpSum([x[i] * ingredients[i]['价格'] for i in ingredients]), "总价格"
|
||||||
|
|
||||||
|
# 约束1:总比例=100%
|
||||||
|
model += pulp.lpSum([x[i] for i in ingredients]) == 1, "总比例"
|
||||||
|
|
||||||
|
# 约束2:营养需求(下限/上限)
|
||||||
|
for req, value in requirements.items():
|
||||||
|
if '下限' in req:
|
||||||
|
nutrient = req.replace('_下限', '')
|
||||||
|
# 营养总和≥下限(如蛋白≥17%)
|
||||||
|
model += pulp.lpSum([x[i] * ingredients[i][nutrient] for i in ingredients]) >= value, req
|
||||||
|
elif '上限' in req:
|
||||||
|
nutrient = req.replace('_上限', '')
|
||||||
|
# 营养总和≤上限(如纤维≤6%)
|
||||||
|
model += pulp.lpSum([x[i] * ingredients[i][nutrient] for i in ingredients]) <= value, req
|
||||||
|
|
||||||
|
# 求解:用CBC极限精度,深度优先,限时10秒
|
||||||
|
try:
|
||||||
|
solver = pulp.PULP_CBC_CMD(msg=True,
|
||||||
|
options=['primalT', '1e-12', 'dualT', '1e-12', 'maxIt', '10000000', 'presolve', 'on',
|
||||||
|
'strategy', '2', 'randomC', '123', 'sec', '10'])
|
||||||
|
model.solve(solver)
|
||||||
|
except AttributeError:
|
||||||
|
print("警告:CBC不可用,使用默认求解器,精度可能稍低")
|
||||||
|
model.solve()
|
||||||
|
|
||||||
|
# 检查是否找到最优解
|
||||||
|
if pulp.LpStatus[model.status] != 'Optimal':
|
||||||
|
print("约束值(调试用):")
|
||||||
|
for name, constraint in model.constraints.items():
|
||||||
|
print(f"{name}: {constraint.value()}")
|
||||||
|
return {"错误": "无解!检查数据(纤维/单宁超?蛋白/氨基酸不足?)"}
|
||||||
|
|
||||||
|
# 构建结果
|
||||||
|
result = {}
|
||||||
|
total_price = pulp.value(model.objective)
|
||||||
|
result['总价格'] = round(total_price, 2)
|
||||||
|
result['一斤饲料价格'] = round(total_price / 2000, 2) # 吨=2000斤
|
||||||
|
|
||||||
|
# 每种原料的比例(%)和成本(元/吨)
|
||||||
|
for i in ingredients:
|
||||||
|
result[i] = {field: round(pulp.value(x[i]) * 100, 2) if field == '比例' else round(
|
||||||
|
pulp.value(x[i]) * ingredients[i]['价格'], 2) for field in result_fields}
|
||||||
|
|
||||||
|
# 计算营养总量
|
||||||
|
nutrients = list(set(key for ing in ingredients.values() for key in ing if key not in ['价格']))
|
||||||
|
result['营养总量'] = {}
|
||||||
|
for nut in nutrients:
|
||||||
|
total = sum(pulp.value(x[i]) * ingredients[i].get(nut, 0) for i in ingredients)
|
||||||
|
result['营养总量'][nut] = round(total, 2)
|
||||||
|
|
||||||
|
# 检查超标(宁可无解也不超)
|
||||||
|
for req, value in requirements.items():
|
||||||
|
if '上限' in req:
|
||||||
|
nut = req.replace('_上限', '')
|
||||||
|
if result['营养总量'][nut] > value + 0.01: # 容忍小误差
|
||||||
|
return {"错误": f"{nut}超上限: {result['营养总量'][nut]} > {value} (可能浮点误差)"}
|
||||||
|
|
||||||
|
# 存CSV到results/
|
||||||
|
os.makedirs('results', exist_ok=True)
|
||||||
|
df_formula = pd.DataFrame(
|
||||||
|
[(k, v['比例'], v['成本']) for k, v in result.items() if k not in ['总价格', '一斤饲料价格', '营养总量']],
|
||||||
|
columns=['原料', '比例', '成本'])
|
||||||
|
df_formula.to_csv('results/优化配方结果.csv', index=False)
|
||||||
|
|
||||||
|
# 营养偏差表
|
||||||
|
nutrient_table = []
|
||||||
|
for nut, value in result['营养总量'].items():
|
||||||
|
req_key = f"{nut}_下限" if f"{nut}_下限" in requirements else f"{nut}_上限"
|
||||||
|
req_type = '下限' if f"{nut}_下限" in requirements else '上限'
|
||||||
|
req_value = requirements.get(req_key, None)
|
||||||
|
deviation = value - req_value if req_key.endswith('_下限') else req_value - value
|
||||||
|
deviation_pct = (deviation / req_value * 100) if req_value != 0 else 0
|
||||||
|
status = '达标' if (req_key.endswith('_下限') and value >= req_value) or (
|
||||||
|
req_key.endswith('_上限') and value <= req_value) else '不达标'
|
||||||
|
nutrient_table.append([nut, value, req_value, req_type, deviation, deviation_pct, status])
|
||||||
|
df_nutrients = pd.DataFrame(nutrient_table,
|
||||||
|
columns=['营养', '实际值', '需求值', '需求类型', '偏差', '偏差比例(%)', '状态'])
|
||||||
|
df_nutrients.to_csv('results/营养总量与需求偏差.csv', index=False)
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# 原料数据(单位:%或MJ/kg,价格元/吨,2025年9月农业农村部/饲料市场信息网)
|
||||||
|
ingredients = {
|
||||||
|
'构树叶_未加工': {'蛋白': 13, '能量': 8.5, '纤维': 25, '赖氨酸': 0.4, '蛋氨酸': 0.08, '钙': 1.8, '磷': 0.15,
|
||||||
|
'单宁': 2.5, '价格': 500},
|
||||||
|
'构树叶_发酵': {'蛋白': 15, '能量': 9, '纤维': 15, '赖氨酸': 0.5, '蛋氨酸': 0.1, '钙': 1.5, '磷': 0.2,
|
||||||
|
'单宁': 1.5, '价格': 600},
|
||||||
|
'玉米胚芽_压榨': {'蛋白': 11, '能量': 13, '纤维': 7, '赖氨酸': 0.4, '蛋氨酸': 0.2, '钙': 0.1, '磷': 0.3,
|
||||||
|
'单宁': 0, '价格': 1700},
|
||||||
|
'麦麸': {'蛋白': 15, '能量': 10, '纤维': 12, '赖氨酸': 0.4, '蛋氨酸': 0.2, '钙': 0.1, '磷': 1.0, '单宁': 0,
|
||||||
|
'价格': 1300},
|
||||||
|
'米糠': {'蛋白': 13, '能量': 11, '纤维': 10, '赖氨酸': 0.4, '蛋氨酸': 0.2, '钙': 0.1, '磷': 1.5, '单宁': 0,
|
||||||
|
'价格': 1100},
|
||||||
|
'牧草_苜蓿干': {'蛋白': 17, '能量': 8.5, '纤维': 20, '赖氨酸': 0.6, '蛋氨酸': 0.2, '钙': 1.2, '磷': 0.3,
|
||||||
|
'单宁': 0.5, '价格': 800},
|
||||||
|
'玉米': {'蛋白': 9, '能量': 13.5, '纤维': 2.5, '赖氨酸': 0.3, '蛋氨酸': 0.17, '钙': 0.02, '磷': 0.3, '单宁': 0,
|
||||||
|
'价格': 2367},
|
||||||
|
'豆粕': {'蛋白': 46, '能量': 10.5, '纤维': 4, '赖氨酸': 2.8, '蛋氨酸': 0.6, '钙': 0.3, '磷': 0.7, '单宁': 0,
|
||||||
|
'价格': 3300},
|
||||||
|
'植物油_豆油': {'蛋白': 0, '能量': 36, '纤维': 0, '赖氨酸': 0, '蛋氨酸': 0, '钙': 0, '磷': 0, '单宁': 0,
|
||||||
|
'价格': 7500},
|
||||||
|
'赖氨酸_L盐': {'蛋白': 78, '能量': 0, '纤维': 0, '赖氨酸': 78, '蛋氨酸': 0, '钙': 0, '磷': 0, '单宁': 0,
|
||||||
|
'价格': 15000},
|
||||||
|
'蛋氨酸_DL': {'蛋白': 99, '能量': 0, '纤维': 0, '赖氨酸': 0, '蛋氨酸': 99, '钙': 0, '磷': 0, '单宁': 0,
|
||||||
|
'价格': 25000},
|
||||||
|
'预混料_维生素微量元素': {'蛋白': 0, '能量': 0, '纤维': 0, '赖氨酸': 0, '蛋氨酸': 0, '钙': 10, '磷': 5,
|
||||||
|
'单宁': 0, '价格': 3000},
|
||||||
|
'鱼粉': {'蛋白': 60, '能量': 12, '纤维': 1, '赖氨酸': 3.5, '蛋氨酸': 1.5, '钙': 5, '磷': 3, '单宁': 0,
|
||||||
|
'价格': 5000},
|
||||||
|
'骨粉': {'蛋白': 0, '能量': 0, '纤维': 0, '赖氨酸': 0, '蛋氨酸': 0, '钙': 30, '磷': 15, '单宁': 0,
|
||||||
|
'价格': 1500},
|
||||||
|
'食盐': {'蛋白': 0, '能量': 0, '纤维': 0, '赖氨酸': 0, '蛋氨酸': 0, '钙': 0, '磷': 0, '单宁': 0,
|
||||||
|
'价格': 500}
|
||||||
|
}
|
||||||
|
|
||||||
|
# 育肥猪需求(30-115kg,NY/T 65-2004+丹麦标准,单位:%或MJ/kg)
|
||||||
requirements = {
|
requirements = {
|
||||||
'蛋白_下限': 17,
|
'蛋白_下限': 17,
|
||||||
'能量_下限': 13,
|
'能量_下限': 12.5,
|
||||||
'纤维_上限': 5,
|
'纤维_上限': 6,
|
||||||
'赖氨酸_下限': 0.75,
|
'赖氨酸_下限': 0.8,
|
||||||
'蛋氨酸_下限': 0.25,
|
'蛋氨酸_下限': 0.25,
|
||||||
'钙_下限': 0.5,
|
'钙_下限': 0.5,
|
||||||
'磷_下限': 0.4
|
'磷_下限': 0.4,
|
||||||
|
'单宁_上限': 0.5
|
||||||
}
|
}
|
||||||
|
|
||||||
# 运行优化
|
# 优化配方
|
||||||
result = optimize_feed.optimize_feed(requirements, ingredients, ['比例', '成本'], 'min')
|
result = optimize_feed(requirements, ingredients, ['比例', '成本'], 'min')
|
||||||
print("优化结果:")
|
|
||||||
for key, value in result.items():
|
# 美化输出:优化配方
|
||||||
print(f"{key}: {value}")
|
print("\n=== 优化配方结果 ===")
|
||||||
|
table_data = [(k, v['比例'], v['成本']) for k, v in result.items() if
|
||||||
|
k not in ['总价格', '一斤饲料价格', '营养总量']]
|
||||||
|
headers = ['原料', '比例 (%)', '成本 (元/吨)']
|
||||||
|
print(tabulate(table_data, headers=headers, tablefmt='grid', floatfmt='.2f'))
|
||||||
|
print(f"总价格: {result['总价格']:.2f} 元/吨")
|
||||||
|
print(f"一斤饲料价格: {result['一斤饲料价格']:.2f} 元")
|
||||||
|
|
||||||
|
# 营养总量与需求偏差
|
||||||
|
print("\n=== 营养总量与需求偏差 ===")
|
||||||
|
nutrient_table = []
|
||||||
|
for nut, value in result['营养总量'].items():
|
||||||
|
req_key = f"{nut}_下限" if f"{nut}_下限" in requirements else f"{nut}_上限"
|
||||||
|
req_type = '下限' if f"{nut}_下限" in requirements else '上限'
|
||||||
|
req_value = requirements.get(req_key, None)
|
||||||
|
deviation = value - req_value if req_key.endswith('_下限') else req_value - value
|
||||||
|
deviation_pct = (deviation / req_value * 100) if req_value != 0 else 0
|
||||||
|
status = '达标' if (req_key.endswith('_下限') and value >= req_value) or (
|
||||||
|
req_key.endswith('_上限') and value <= req_value) else '不达标'
|
||||||
|
nutrient_table.append([nut, value, req_value, req_type, deviation, deviation_pct, status])
|
||||||
|
print(tabulate(nutrient_table, headers=['营养', '实际值', '需求值', '需求类型', '偏差', '偏差比例(%)', '状态'],
|
||||||
|
tablefmt='grid', floatfmt='.2f'))
|
||||||
|
|
||||||
|
# 市面配方(2025年养猪网,21-35kg调整至30-115kg)
|
||||||
|
market_formula = {
|
||||||
|
'玉米': 0.59,
|
||||||
|
'麦麸': 0.13,
|
||||||
|
'豆粕': 0.15,
|
||||||
|
'鱼粉': 0.06,
|
||||||
|
'骨粉': 0.015,
|
||||||
|
'食盐': 0.005
|
||||||
|
}
|
||||||
|
|
||||||
|
# 市面配方营养和成本
|
||||||
|
market_nutrients = calculate_nutrients_from_formula(market_formula, ingredients)
|
||||||
|
market_cost = calculate_cost_from_formula(market_formula, ingredients)
|
||||||
|
|
||||||
|
print("\n=== 市面配方营养总量 ===")
|
||||||
|
print(tabulate([(k, v) for k, v in market_nutrients.items()], headers=['营养', '值'], tablefmt='grid',
|
||||||
|
floatfmt='.2f'))
|
||||||
|
pd.DataFrame([(k, v) for k, v in market_nutrients.items()], columns=['营养', '值']).to_csv(
|
||||||
|
'results/市面配方营养总量.csv', index=False)
|
||||||
|
|
||||||
|
print("\n=== 市面配方成本与偏差 ===")
|
||||||
|
cost_table = [
|
||||||
|
['总价格 (元/吨)', market_cost['总价格'], result['总价格'], market_cost['总价格'] - result['总价格']],
|
||||||
|
['一斤饲料价格 (元)', market_cost['一斤饲料价格'], result['一斤饲料价格'],
|
||||||
|
market_cost['一斤饲料价格'] - result['一斤饲料价格']]
|
||||||
|
]
|
||||||
|
print(tabulate(cost_table, headers=['项', '市面配方', '优化配方', '偏差'], tablefmt='grid', floatfmt='.2f'))
|
||||||
|
pd.DataFrame(cost_table, columns=['项', '市面配方', '优化配方', '偏差']).to_csv('results/市面配方成本与偏差.csv',
|
||||||
|
index=False)
|
||||||
|
|
||||||
|
print("\n所有结果已存至 results/ 文件夹")
|
||||||
|
|||||||
@@ -1,48 +0,0 @@
|
|||||||
import pulp
|
|
||||||
def optimize_feed(requirements, ingredients, result_fields, optimization_type='min'):
|
|
||||||
"""
|
|
||||||
优化饲料配方,计算最低/最高目标值的原料比例
|
|
||||||
:param requirements: 猪营养需求字典,如 {'蛋白_下限': 16, '能量_下限': 12, '纤维_上限': 8}
|
|
||||||
:param ingredients: 原料数据字典,如 {'构树叶': {'蛋白': 18, '能量': 10, '纤维': 5, '价格': 500}}
|
|
||||||
:param result_fields: 结果字段列表,如 ['比例', '成本']
|
|
||||||
:param optimization_type: 'min'(最小化,如成本)或 'max'(最大化,如消化率)
|
|
||||||
:return: 字典,含结果字段和值,如 {'构树叶': {'比例': 0.2, '成本': 100}, '总成本': 1475}
|
|
||||||
"""
|
|
||||||
# 创建模型
|
|
||||||
sense = pulp.LpMinimize if optimization_type == 'min' else pulp.LpMaximize
|
|
||||||
model = pulp.LpProblem("Feed_Optimization", sense)
|
|
||||||
|
|
||||||
# 决策变量:原料比例(0-1)
|
|
||||||
x = pulp.LpVariable.dicts("比例", ingredients, lowBound=0, upBound=1)
|
|
||||||
|
|
||||||
# 目标函数:优化指定字段(如价格)
|
|
||||||
target_field = next(f for f in ingredients[list(ingredients.keys())[0]] if '价格' in f or '成本' in f) # 默认优化价格
|
|
||||||
model += pulp.lpSum([x[i] * ingredients[i][target_field] for i in ingredients]), "目标"
|
|
||||||
|
|
||||||
# 约束1:总比例=100%
|
|
||||||
model += pulp.lpSum([x[i] for i in ingredients]) == 1, "总比例"
|
|
||||||
|
|
||||||
# 约束2:营养需求(下限/上限)
|
|
||||||
for req, value in requirements.items():
|
|
||||||
if '下限' in req:
|
|
||||||
nutrient = req.replace('_下限', '')
|
|
||||||
model += pulp.lpSum([x[i] * ingredients[i][nutrient] for i in ingredients]) >= value, req
|
|
||||||
elif '上限' in req:
|
|
||||||
nutrient = req.replace('_上限', '')
|
|
||||||
model += pulp.lpSum([x[i] * ingredients[i][nutrient] for i in ingredients]) <= value, req
|
|
||||||
|
|
||||||
# 求解
|
|
||||||
model.solve()
|
|
||||||
|
|
||||||
# 构建结果
|
|
||||||
if pulp.LpStatus[model.status] != 'Optimal':
|
|
||||||
return {"错误": "无解!检查原料数据或需求(比如纤维全超上限?)"}
|
|
||||||
|
|
||||||
result = {}
|
|
||||||
total_target = pulp.value(model.objective)
|
|
||||||
result['总' + target_field] = round(total_target, 2)
|
|
||||||
for i in ingredients:
|
|
||||||
result[i] = {field: round(pulp.value(x[i]) * 100, 2) if field == '比例' else round(
|
|
||||||
pulp.value(x[i]) * ingredients[i][target_field], 2) for field in result_fields}
|
|
||||||
return result
|
|
||||||
|
|
||||||
16
results/优化配方结果.csv
Normal file
16
results/优化配方结果.csv
Normal file
@@ -0,0 +1,16 @@
|
|||||||
|
原料,比例,成本
|
||||||
|
构树叶_未加工,0.0,0.0
|
||||||
|
构树叶_发酵,0.0,0.0
|
||||||
|
玉米胚芽_压榨,73.58,1250.87
|
||||||
|
麦麸,0.0,0.0
|
||||||
|
米糠,0.0,0.0
|
||||||
|
牧草_苜蓿干,0.0,0.0
|
||||||
|
玉米,8.1,191.8
|
||||||
|
豆粕,15.79,521.05
|
||||||
|
植物油_豆油,0.0,0.0
|
||||||
|
赖氨酸_L盐,0.0,0.0
|
||||||
|
蛋氨酸_DL,0.0,0.0
|
||||||
|
预混料_维生素微量元素,0.0,0.0
|
||||||
|
鱼粉,1.52,76.15
|
||||||
|
骨粉,1.0,15.06
|
||||||
|
食盐,0.0,0.0
|
||||||
|
3
results/市面配方成本与偏差.csv
Normal file
3
results/市面配方成本与偏差.csv
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
项,市面配方,优化配方,偏差
|
||||||
|
总价格 (元/吨),2385.53,2054.93,330.60000000000036
|
||||||
|
一斤饲料价格 (元),1.19,1.03,0.15999999999999992
|
||||||
|
9
results/市面配方营养总量.csv
Normal file
9
results/市面配方营养总量.csv
Normal file
@@ -0,0 +1,9 @@
|
|||||||
|
营养,值
|
||||||
|
蛋氨酸,0.31
|
||||||
|
能量,11.56
|
||||||
|
赖氨酸,0.86
|
||||||
|
钙,0.82
|
||||||
|
磷,0.82
|
||||||
|
蛋白,17.76
|
||||||
|
纤维,3.7
|
||||||
|
单宁,0.0
|
||||||
|
9
results/营养总量与需求偏差.csv
Normal file
9
results/营养总量与需求偏差.csv
Normal file
@@ -0,0 +1,9 @@
|
|||||||
|
营养,实际值,需求值,需求类型,偏差,偏差比例(%),状态
|
||||||
|
蛋氨酸,0.28,0.25,下限,0.030000000000000027,12.00000000000001,达标
|
||||||
|
能量,12.5,12.5,下限,0.0,0.0,达标
|
||||||
|
赖氨酸,0.81,0.8,下限,0.010000000000000009,1.250000000000001,达标
|
||||||
|
钙,0.5,0.5,下限,0.0,0.0,达标
|
||||||
|
磷,0.55,0.4,下限,0.15000000000000002,37.50000000000001,达标
|
||||||
|
蛋白,17.0,17.0,下限,0.0,0.0,达标
|
||||||
|
纤维,6.0,6.0,上限,0.0,0.0,达标
|
||||||
|
单宁,0.0,0.5,上限,0.5,100.0,达标
|
||||||
|
Reference in New Issue
Block a user