import pulp import pandas as pd from tabulate import tabulate import os def calculate_nutrients_from_formula(formula_proportions, ingredients): """ 计算市面配方营养总量,作为需求校准 :param formula_proportions: 配方比例字典,如 {'玉米': 0.59, '豆粕': 0.15} :param ingredients: 原料数据字典,含营养值/价格 :return: 营养总量字典,如 {'蛋白': 17.76, '能量': 11.56} """ nutrients = list(set(key for ing in ingredients.values() for key in ing if key not in ['价格'])) total_nutrients = {} for nut in nutrients: total = sum(formula_proportions.get(i, 0) * ingredients.get(i, {}).get(nut, 0) for i in formula_proportions) total_nutrients[nut] = round(total, 2) return total_nutrients def calculate_cost_from_formula(formula_proportions, ingredients): """ 计算市面配方成本,作为参考 :param formula_proportions: 配方比例字典,如 {'玉米': 0.59} :param ingredients: 原料数据字典,含价格 :return: 成本字典,含总价格和一斤价格 """ total_price = sum( formula_proportions.get(i, 0) * ingredients.get(i, {}).get('价格', 0) for i in formula_proportions) return { '总价格': round(total_price, 2), '一斤饲料价格': round(total_price / 2000, 2) # 吨=2000斤 } def optimize_feed(requirements, ingredients, result_fields, optimization_type='min'): """ 优化饲料配方,计算最低/最高目标值的原料比例 :param requirements: 猪营养需求字典,如 {'蛋白_下限': 17, '能量_下限': 12.5, '纤维_上限': 6} :param ingredients: 原料数据字典,如 {'构树叶_发酵': {'蛋白': 15, '能量': 9, '纤维': 15, '价格': 600}} :param result_fields: 结果字段列表,如 ['比例', '成本'] :param optimization_type: 'min'(最小化,如成本)或 'max'(最大化,如消化率) :return: 字典,含结果字段和值,如 {'构树叶_发酵': {'比例': 14.29, '成本': 85.74}, '总价格': 1989.12} """ sense = pulp.LpMinimize if optimization_type == 'min' else pulp.LpMaximize model = pulp.LpProblem("Feed_Optimization", sense) # 决策变量:每种原料比例(0-1,单位:比例) x = pulp.LpVariable.dicts("比例", ingredients, lowBound=0, upBound=1) # 目标函数:最小化总价格(纯价格,无额外权重) model += pulp.lpSum([x[i] * ingredients[i]['价格'] for i in ingredients]), "总价格" # 约束1:总比例=100% model += pulp.lpSum([x[i] for i in ingredients]) == 1, "总比例" # 约束2:营养需求(下限/上限) for req, value in requirements.items(): if '下限' in req: nutrient = req.replace('_下限', '') # 营养总和≥下限(如蛋白≥17%) model += pulp.lpSum([x[i] * ingredients[i][nutrient] for i in ingredients]) >= value, req elif '上限' in req: nutrient = req.replace('_上限', '') # 营养总和≤上限(如纤维≤6%) model += pulp.lpSum([x[i] * ingredients[i][nutrient] for i in ingredients]) <= value, req # 求解:用CBC极限精度,深度优先,限时10秒 try: solver = pulp.PULP_CBC_CMD(msg=True, options=['primalT', '1e-12', 'dualT', '1e-12', 'maxIt', '10000000', 'presolve', 'on', 'strategy', '2', 'randomC', '123', 'sec', '10']) model.solve(solver) except AttributeError: print("警告:CBC不可用,使用默认求解器,精度可能稍低") model.solve() # 检查是否找到最优解 if pulp.LpStatus[model.status] != 'Optimal': print("约束值(调试用):") for name, constraint in model.constraints.items(): print(f"{name}: {constraint.value()}") return {"错误": "无解!检查数据(纤维/单宁超?蛋白/氨基酸不足?)"} # 构建结果 result = {} total_price = pulp.value(model.objective) result['总价格'] = round(total_price, 2) result['一斤饲料价格'] = round(total_price / 2000, 2) # 吨=2000斤 # 每种原料的比例(%)和成本(元/吨) for i in ingredients: result[i] = {field: round(pulp.value(x[i]) * 100, 2) if field == '比例' else round( pulp.value(x[i]) * ingredients[i]['价格'], 2) for field in result_fields} # 计算营养总量 nutrients = list(set(key for ing in ingredients.values() for key in ing if key not in ['价格'])) result['营养总量'] = {} for nut in nutrients: total = sum(pulp.value(x[i]) * ingredients[i].get(nut, 0) for i in ingredients) result['营养总量'][nut] = round(total, 2) # 检查超标(宁可无解也不超) for req, value in requirements.items(): if '上限' in req: nut = req.replace('_上限', '') if result['营养总量'][nut] > value + 0.01: # 容忍小误差 return {"错误": f"{nut}超上限: {result['营养总量'][nut]} > {value} (可能浮点误差)"} # 存CSV到results/ os.makedirs('results', exist_ok=True) df_formula = pd.DataFrame( [(k, v['比例'], v['成本']) for k, v in result.items() if k not in ['总价格', '一斤饲料价格', '营养总量']], columns=['原料', '比例', '成本']) df_formula.to_csv('results/优化配方结果.csv', index=False) # 营养偏差表 nutrient_table = [] for nut, value in result['营养总量'].items(): req_key = f"{nut}_下限" if f"{nut}_下限" in requirements else f"{nut}_上限" req_type = '下限' if f"{nut}_下限" in requirements else '上限' req_value = requirements.get(req_key, None) deviation = value - req_value if req_key.endswith('_下限') else req_value - value deviation_pct = (deviation / req_value * 100) if req_value != 0 else 0 status = '达标' if (req_key.endswith('_下限') and value >= req_value) or ( req_key.endswith('_上限') and value <= req_value) else '不达标' nutrient_table.append([nut, value, req_value, req_type, deviation, deviation_pct, status]) df_nutrients = pd.DataFrame(nutrient_table, columns=['营养', '实际值', '需求值', '需求类型', '偏差', '偏差比例(%)', '状态']) df_nutrients.to_csv('results/营养总量与需求偏差.csv', index=False) return result if __name__ == "__main__": # 原料数据(单位:%或MJ/kg,价格元/吨,2025年9月农业农村部/饲料市场信息网) ingredients = { '构树叶_未加工': {'蛋白': 13, '能量': 8.5, '纤维': 25, '赖氨酸': 0.4, '蛋氨酸': 0.08, '钙': 1.8, '磷': 0.15, '单宁': 2.5, '价格': 500}, '构树叶_发酵': {'蛋白': 15, '能量': 9, '纤维': 15, '赖氨酸': 0.5, '蛋氨酸': 0.1, '钙': 1.5, '磷': 0.2, '单宁': 1.5, '价格': 600}, '玉米胚芽_压榨': {'蛋白': 11, '能量': 13, '纤维': 7, '赖氨酸': 0.4, '蛋氨酸': 0.2, '钙': 0.1, '磷': 0.3, '单宁': 0, '价格': 1700}, '麦麸': {'蛋白': 15, '能量': 10, '纤维': 12, '赖氨酸': 0.4, '蛋氨酸': 0.2, '钙': 0.1, '磷': 1.0, '单宁': 0, '价格': 1300}, '米糠': {'蛋白': 13, '能量': 11, '纤维': 10, '赖氨酸': 0.4, '蛋氨酸': 0.2, '钙': 0.1, '磷': 1.5, '单宁': 0, '价格': 1100}, '牧草_苜蓿干': {'蛋白': 17, '能量': 8.5, '纤维': 20, '赖氨酸': 0.6, '蛋氨酸': 0.2, '钙': 1.2, '磷': 0.3, '单宁': 0.5, '价格': 800}, '玉米': {'蛋白': 9, '能量': 13.5, '纤维': 2.5, '赖氨酸': 0.3, '蛋氨酸': 0.17, '钙': 0.02, '磷': 0.3, '单宁': 0, '价格': 2367}, '豆粕': {'蛋白': 46, '能量': 10.5, '纤维': 4, '赖氨酸': 2.8, '蛋氨酸': 0.6, '钙': 0.3, '磷': 0.7, '单宁': 0, '价格': 3300}, '植物油_豆油': {'蛋白': 0, '能量': 36, '纤维': 0, '赖氨酸': 0, '蛋氨酸': 0, '钙': 0, '磷': 0, '单宁': 0, '价格': 7500}, '赖氨酸_L盐': {'蛋白': 78, '能量': 0, '纤维': 0, '赖氨酸': 78, '蛋氨酸': 0, '钙': 0, '磷': 0, '单宁': 0, '价格': 15000}, '蛋氨酸_DL': {'蛋白': 99, '能量': 0, '纤维': 0, '赖氨酸': 0, '蛋氨酸': 99, '钙': 0, '磷': 0, '单宁': 0, '价格': 25000}, '预混料_维生素微量元素': {'蛋白': 0, '能量': 0, '纤维': 0, '赖氨酸': 0, '蛋氨酸': 0, '钙': 10, '磷': 5, '单宁': 0, '价格': 3000}, '鱼粉': {'蛋白': 60, '能量': 12, '纤维': 1, '赖氨酸': 3.5, '蛋氨酸': 1.5, '钙': 5, '磷': 3, '单宁': 0, '价格': 5000}, '骨粉': {'蛋白': 0, '能量': 0, '纤维': 0, '赖氨酸': 0, '蛋氨酸': 0, '钙': 30, '磷': 15, '单宁': 0, '价格': 1500}, '食盐': {'蛋白': 0, '能量': 0, '纤维': 0, '赖氨酸': 0, '蛋氨酸': 0, '钙': 0, '磷': 0, '单宁': 0, '价格': 500} } # 育肥猪需求(30-115kg,NY/T 65-2004+丹麦标准,单位:%或MJ/kg) requirements = { '蛋白_下限': 17, '能量_下限': 12.5, '纤维_上限': 6, '赖氨酸_下限': 0.8, '蛋氨酸_下限': 0.25, '钙_下限': 0.5, '磷_下限': 0.4, '单宁_上限': 0.5 } # 优化配方 result = optimize_feed(requirements, ingredients, ['比例', '成本'], 'min') # 美化输出:优化配方 print("\n=== 优化配方结果 ===") table_data = [(k, v['比例'], v['成本']) for k, v in result.items() if k not in ['总价格', '一斤饲料价格', '营养总量']] headers = ['原料', '比例 (%)', '成本 (元/吨)'] print(tabulate(table_data, headers=headers, tablefmt='grid', floatfmt='.2f')) print(f"总价格: {result['总价格']:.2f} 元/吨") print(f"一斤饲料价格: {result['一斤饲料价格']:.2f} 元") # 营养总量与需求偏差 print("\n=== 营养总量与需求偏差 ===") nutrient_table = [] for nut, value in result['营养总量'].items(): req_key = f"{nut}_下限" if f"{nut}_下限" in requirements else f"{nut}_上限" req_type = '下限' if f"{nut}_下限" in requirements else '上限' req_value = requirements.get(req_key, None) deviation = value - req_value if req_key.endswith('_下限') else req_value - value deviation_pct = (deviation / req_value * 100) if req_value != 0 else 0 status = '达标' if (req_key.endswith('_下限') and value >= req_value) or ( req_key.endswith('_上限') and value <= req_value) else '不达标' nutrient_table.append([nut, value, req_value, req_type, deviation, deviation_pct, status]) print(tabulate(nutrient_table, headers=['营养', '实际值', '需求值', '需求类型', '偏差', '偏差比例(%)', '状态'], tablefmt='grid', floatfmt='.2f')) # 市面配方(2025年养猪网,21-35kg调整至30-115kg) market_formula = { '玉米': 0.59, '麦麸': 0.13, '豆粕': 0.15, '鱼粉': 0.06, '骨粉': 0.015, '食盐': 0.005 } # 市面配方营养和成本 market_nutrients = calculate_nutrients_from_formula(market_formula, ingredients) market_cost = calculate_cost_from_formula(market_formula, ingredients) print("\n=== 市面配方营养总量 ===") print(tabulate([(k, v) for k, v in market_nutrients.items()], headers=['营养', '值'], tablefmt='grid', floatfmt='.2f')) pd.DataFrame([(k, v) for k, v in market_nutrients.items()], columns=['营养', '值']).to_csv( 'results/市面配方营养总量.csv', index=False) print("\n=== 市面配方成本与偏差 ===") cost_table = [ ['总价格 (元/吨)', market_cost['总价格'], result['总价格'], market_cost['总价格'] - result['总价格']], ['一斤饲料价格 (元)', market_cost['一斤饲料价格'], result['一斤饲料价格'], market_cost['一斤饲料价格'] - result['一斤饲料价格']] ] print(tabulate(cost_table, headers=['项', '市面配方', '优化配方', '偏差'], tablefmt='grid', floatfmt='.2f')) pd.DataFrame(cost_table, columns=['项', '市面配方', '优化配方', '偏差']).to_csv('results/市面配方成本与偏差.csv', index=False) print("\n所有结果已存至 results/ 文件夹")