1265 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			1265 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| // Copyright (c) 2005  Tom Wu
 | |
| // All Rights Reserved.
 | |
| // See "LICENSE" for details.
 | |
| 
 | |
| // Basic JavaScript BN library - subset useful for RSA encryption.
 | |
| 
 | |
| /*
 | |
| Licensing (LICENSE)
 | |
| -------------------
 | |
| 
 | |
| This software is covered under the following copyright:
 | |
| */
 | |
| /*
 | |
|  * Copyright (c) 2003-2005  Tom Wu
 | |
|  * All Rights Reserved.
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining
 | |
|  * a copy of this software and associated documentation files (the
 | |
|  * "Software"), to deal in the Software without restriction, including
 | |
|  * without limitation the rights to use, copy, modify, merge, publish,
 | |
|  * distribute, sublicense, and/or sell copies of the Software, and to
 | |
|  * permit persons to whom the Software is furnished to do so, subject to
 | |
|  * the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be
 | |
|  * included in all copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
 | |
|  * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
 | |
|  * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
 | |
|  *
 | |
|  * IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
 | |
|  * INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
 | |
|  * RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF
 | |
|  * THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT
 | |
|  * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 | |
|  *
 | |
|  * In addition, the following condition applies:
 | |
|  *
 | |
|  * All redistributions must retain an intact copy of this copyright notice
 | |
|  * and disclaimer.
 | |
|  */
 | |
| /*
 | |
| Address all questions regarding this license to:
 | |
| 
 | |
|   Tom Wu
 | |
|   tjw@cs.Stanford.EDU
 | |
| */
 | |
| var forge = require('./forge');
 | |
| 
 | |
| module.exports = forge.jsbn = forge.jsbn || {};
 | |
| 
 | |
| // Bits per digit
 | |
| var dbits;
 | |
| 
 | |
| // JavaScript engine analysis
 | |
| var canary = 0xdeadbeefcafe;
 | |
| var j_lm = ((canary&0xffffff)==0xefcafe);
 | |
| 
 | |
| // (public) Constructor
 | |
| function BigInteger(a,b,c) {
 | |
|   this.data = [];
 | |
|   if(a != null)
 | |
|     if("number" == typeof a) this.fromNumber(a,b,c);
 | |
|     else if(b == null && "string" != typeof a) this.fromString(a,256);
 | |
|     else this.fromString(a,b);
 | |
| }
 | |
| forge.jsbn.BigInteger = BigInteger;
 | |
| 
 | |
| // return new, unset BigInteger
 | |
| function nbi() { return new BigInteger(null); }
 | |
| 
 | |
| // am: Compute w_j += (x*this_i), propagate carries,
 | |
| // c is initial carry, returns final carry.
 | |
| // c < 3*dvalue, x < 2*dvalue, this_i < dvalue
 | |
| // We need to select the fastest one that works in this environment.
 | |
| 
 | |
| // am1: use a single mult and divide to get the high bits,
 | |
| // max digit bits should be 26 because
 | |
| // max internal value = 2*dvalue^2-2*dvalue (< 2^53)
 | |
| function am1(i,x,w,j,c,n) {
 | |
|   while(--n >= 0) {
 | |
|     var v = x*this.data[i++]+w.data[j]+c;
 | |
|     c = Math.floor(v/0x4000000);
 | |
|     w.data[j++] = v&0x3ffffff;
 | |
|   }
 | |
|   return c;
 | |
| }
 | |
| // am2 avoids a big mult-and-extract completely.
 | |
| // Max digit bits should be <= 30 because we do bitwise ops
 | |
| // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
 | |
| function am2(i,x,w,j,c,n) {
 | |
|   var xl = x&0x7fff, xh = x>>15;
 | |
|   while(--n >= 0) {
 | |
|     var l = this.data[i]&0x7fff;
 | |
|     var h = this.data[i++]>>15;
 | |
|     var m = xh*l+h*xl;
 | |
|     l = xl*l+((m&0x7fff)<<15)+w.data[j]+(c&0x3fffffff);
 | |
|     c = (l>>>30)+(m>>>15)+xh*h+(c>>>30);
 | |
|     w.data[j++] = l&0x3fffffff;
 | |
|   }
 | |
|   return c;
 | |
| }
 | |
| // Alternately, set max digit bits to 28 since some
 | |
| // browsers slow down when dealing with 32-bit numbers.
 | |
| function am3(i,x,w,j,c,n) {
 | |
|   var xl = x&0x3fff, xh = x>>14;
 | |
|   while(--n >= 0) {
 | |
|     var l = this.data[i]&0x3fff;
 | |
|     var h = this.data[i++]>>14;
 | |
|     var m = xh*l+h*xl;
 | |
|     l = xl*l+((m&0x3fff)<<14)+w.data[j]+c;
 | |
|     c = (l>>28)+(m>>14)+xh*h;
 | |
|     w.data[j++] = l&0xfffffff;
 | |
|   }
 | |
|   return c;
 | |
| }
 | |
| 
 | |
| // node.js (no browser)
 | |
| if(typeof(navigator) === 'undefined')
 | |
| {
 | |
|    BigInteger.prototype.am = am3;
 | |
|    dbits = 28;
 | |
| } else if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
 | |
|   BigInteger.prototype.am = am2;
 | |
|   dbits = 30;
 | |
| } else if(j_lm && (navigator.appName != "Netscape")) {
 | |
|   BigInteger.prototype.am = am1;
 | |
|   dbits = 26;
 | |
| } else { // Mozilla/Netscape seems to prefer am3
 | |
|   BigInteger.prototype.am = am3;
 | |
|   dbits = 28;
 | |
| }
 | |
| 
 | |
| BigInteger.prototype.DB = dbits;
 | |
| BigInteger.prototype.DM = ((1<<dbits)-1);
 | |
| BigInteger.prototype.DV = (1<<dbits);
 | |
| 
 | |
| var BI_FP = 52;
 | |
| BigInteger.prototype.FV = Math.pow(2,BI_FP);
 | |
| BigInteger.prototype.F1 = BI_FP-dbits;
 | |
| BigInteger.prototype.F2 = 2*dbits-BI_FP;
 | |
| 
 | |
| // Digit conversions
 | |
| var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
 | |
| var BI_RC = new Array();
 | |
| var rr,vv;
 | |
| rr = "0".charCodeAt(0);
 | |
| for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
 | |
| rr = "a".charCodeAt(0);
 | |
| for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
 | |
| rr = "A".charCodeAt(0);
 | |
| for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
 | |
| 
 | |
| function int2char(n) { return BI_RM.charAt(n); }
 | |
| function intAt(s,i) {
 | |
|   var c = BI_RC[s.charCodeAt(i)];
 | |
|   return (c==null)?-1:c;
 | |
| }
 | |
| 
 | |
| // (protected) copy this to r
 | |
| function bnpCopyTo(r) {
 | |
|   for(var i = this.t-1; i >= 0; --i) r.data[i] = this.data[i];
 | |
|   r.t = this.t;
 | |
|   r.s = this.s;
 | |
| }
 | |
| 
 | |
| // (protected) set from integer value x, -DV <= x < DV
 | |
| function bnpFromInt(x) {
 | |
|   this.t = 1;
 | |
|   this.s = (x<0)?-1:0;
 | |
|   if(x > 0) this.data[0] = x;
 | |
|   else if(x < -1) this.data[0] = x+this.DV;
 | |
|   else this.t = 0;
 | |
| }
 | |
| 
 | |
| // return bigint initialized to value
 | |
| function nbv(i) { var r = nbi(); r.fromInt(i); return r; }
 | |
| 
 | |
| // (protected) set from string and radix
 | |
| function bnpFromString(s,b) {
 | |
|   var k;
 | |
|   if(b == 16) k = 4;
 | |
|   else if(b == 8) k = 3;
 | |
|   else if(b == 256) k = 8; // byte array
 | |
|   else if(b == 2) k = 1;
 | |
|   else if(b == 32) k = 5;
 | |
|   else if(b == 4) k = 2;
 | |
|   else { this.fromRadix(s,b); return; }
 | |
|   this.t = 0;
 | |
|   this.s = 0;
 | |
|   var i = s.length, mi = false, sh = 0;
 | |
|   while(--i >= 0) {
 | |
|     var x = (k==8)?s[i]&0xff:intAt(s,i);
 | |
|     if(x < 0) {
 | |
|       if(s.charAt(i) == "-") mi = true;
 | |
|       continue;
 | |
|     }
 | |
|     mi = false;
 | |
|     if(sh == 0)
 | |
|       this.data[this.t++] = x;
 | |
|     else if(sh+k > this.DB) {
 | |
|       this.data[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh;
 | |
|       this.data[this.t++] = (x>>(this.DB-sh));
 | |
|     } else
 | |
|       this.data[this.t-1] |= x<<sh;
 | |
|     sh += k;
 | |
|     if(sh >= this.DB) sh -= this.DB;
 | |
|   }
 | |
|   if(k == 8 && (s[0]&0x80) != 0) {
 | |
|     this.s = -1;
 | |
|     if(sh > 0) this.data[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh;
 | |
|   }
 | |
|   this.clamp();
 | |
|   if(mi) BigInteger.ZERO.subTo(this,this);
 | |
| }
 | |
| 
 | |
| // (protected) clamp off excess high words
 | |
| function bnpClamp() {
 | |
|   var c = this.s&this.DM;
 | |
|   while(this.t > 0 && this.data[this.t-1] == c) --this.t;
 | |
| }
 | |
| 
 | |
| // (public) return string representation in given radix
 | |
| function bnToString(b) {
 | |
|   if(this.s < 0) return "-"+this.negate().toString(b);
 | |
|   var k;
 | |
|   if(b == 16) k = 4;
 | |
|   else if(b == 8) k = 3;
 | |
|   else if(b == 2) k = 1;
 | |
|   else if(b == 32) k = 5;
 | |
|   else if(b == 4) k = 2;
 | |
|   else return this.toRadix(b);
 | |
|   var km = (1<<k)-1, d, m = false, r = "", i = this.t;
 | |
|   var p = this.DB-(i*this.DB)%k;
 | |
|   if(i-- > 0) {
 | |
|     if(p < this.DB && (d = this.data[i]>>p) > 0) { m = true; r = int2char(d); }
 | |
|     while(i >= 0) {
 | |
|       if(p < k) {
 | |
|         d = (this.data[i]&((1<<p)-1))<<(k-p);
 | |
|         d |= this.data[--i]>>(p+=this.DB-k);
 | |
|       } else {
 | |
|         d = (this.data[i]>>(p-=k))&km;
 | |
|         if(p <= 0) { p += this.DB; --i; }
 | |
|       }
 | |
|       if(d > 0) m = true;
 | |
|       if(m) r += int2char(d);
 | |
|     }
 | |
|   }
 | |
|   return m?r:"0";
 | |
| }
 | |
| 
 | |
| // (public) -this
 | |
| function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; }
 | |
| 
 | |
| // (public) |this|
 | |
| function bnAbs() { return (this.s<0)?this.negate():this; }
 | |
| 
 | |
| // (public) return + if this > a, - if this < a, 0 if equal
 | |
| function bnCompareTo(a) {
 | |
|   var r = this.s-a.s;
 | |
|   if(r != 0) return r;
 | |
|   var i = this.t;
 | |
|   r = i-a.t;
 | |
|   if(r != 0) return (this.s<0)?-r:r;
 | |
|   while(--i >= 0) if((r=this.data[i]-a.data[i]) != 0) return r;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // returns bit length of the integer x
 | |
| function nbits(x) {
 | |
|   var r = 1, t;
 | |
|   if((t=x>>>16) != 0) { x = t; r += 16; }
 | |
|   if((t=x>>8) != 0) { x = t; r += 8; }
 | |
|   if((t=x>>4) != 0) { x = t; r += 4; }
 | |
|   if((t=x>>2) != 0) { x = t; r += 2; }
 | |
|   if((t=x>>1) != 0) { x = t; r += 1; }
 | |
|   return r;
 | |
| }
 | |
| 
 | |
| // (public) return the number of bits in "this"
 | |
| function bnBitLength() {
 | |
|   if(this.t <= 0) return 0;
 | |
|   return this.DB*(this.t-1)+nbits(this.data[this.t-1]^(this.s&this.DM));
 | |
| }
 | |
| 
 | |
| // (protected) r = this << n*DB
 | |
| function bnpDLShiftTo(n,r) {
 | |
|   var i;
 | |
|   for(i = this.t-1; i >= 0; --i) r.data[i+n] = this.data[i];
 | |
|   for(i = n-1; i >= 0; --i) r.data[i] = 0;
 | |
|   r.t = this.t+n;
 | |
|   r.s = this.s;
 | |
| }
 | |
| 
 | |
| // (protected) r = this >> n*DB
 | |
| function bnpDRShiftTo(n,r) {
 | |
|   for(var i = n; i < this.t; ++i) r.data[i-n] = this.data[i];
 | |
|   r.t = Math.max(this.t-n,0);
 | |
|   r.s = this.s;
 | |
| }
 | |
| 
 | |
| // (protected) r = this << n
 | |
| function bnpLShiftTo(n,r) {
 | |
|   var bs = n%this.DB;
 | |
|   var cbs = this.DB-bs;
 | |
|   var bm = (1<<cbs)-1;
 | |
|   var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i;
 | |
|   for(i = this.t-1; i >= 0; --i) {
 | |
|     r.data[i+ds+1] = (this.data[i]>>cbs)|c;
 | |
|     c = (this.data[i]&bm)<<bs;
 | |
|   }
 | |
|   for(i = ds-1; i >= 0; --i) r.data[i] = 0;
 | |
|   r.data[ds] = c;
 | |
|   r.t = this.t+ds+1;
 | |
|   r.s = this.s;
 | |
|   r.clamp();
 | |
| }
 | |
| 
 | |
| // (protected) r = this >> n
 | |
| function bnpRShiftTo(n,r) {
 | |
|   r.s = this.s;
 | |
|   var ds = Math.floor(n/this.DB);
 | |
|   if(ds >= this.t) { r.t = 0; return; }
 | |
|   var bs = n%this.DB;
 | |
|   var cbs = this.DB-bs;
 | |
|   var bm = (1<<bs)-1;
 | |
|   r.data[0] = this.data[ds]>>bs;
 | |
|   for(var i = ds+1; i < this.t; ++i) {
 | |
|     r.data[i-ds-1] |= (this.data[i]&bm)<<cbs;
 | |
|     r.data[i-ds] = this.data[i]>>bs;
 | |
|   }
 | |
|   if(bs > 0) r.data[this.t-ds-1] |= (this.s&bm)<<cbs;
 | |
|   r.t = this.t-ds;
 | |
|   r.clamp();
 | |
| }
 | |
| 
 | |
| // (protected) r = this - a
 | |
| function bnpSubTo(a,r) {
 | |
|   var i = 0, c = 0, m = Math.min(a.t,this.t);
 | |
|   while(i < m) {
 | |
|     c += this.data[i]-a.data[i];
 | |
|     r.data[i++] = c&this.DM;
 | |
|     c >>= this.DB;
 | |
|   }
 | |
|   if(a.t < this.t) {
 | |
|     c -= a.s;
 | |
|     while(i < this.t) {
 | |
|       c += this.data[i];
 | |
|       r.data[i++] = c&this.DM;
 | |
|       c >>= this.DB;
 | |
|     }
 | |
|     c += this.s;
 | |
|   } else {
 | |
|     c += this.s;
 | |
|     while(i < a.t) {
 | |
|       c -= a.data[i];
 | |
|       r.data[i++] = c&this.DM;
 | |
|       c >>= this.DB;
 | |
|     }
 | |
|     c -= a.s;
 | |
|   }
 | |
|   r.s = (c<0)?-1:0;
 | |
|   if(c < -1) r.data[i++] = this.DV+c;
 | |
|   else if(c > 0) r.data[i++] = c;
 | |
|   r.t = i;
 | |
|   r.clamp();
 | |
| }
 | |
| 
 | |
| // (protected) r = this * a, r != this,a (HAC 14.12)
 | |
| // "this" should be the larger one if appropriate.
 | |
| function bnpMultiplyTo(a,r) {
 | |
|   var x = this.abs(), y = a.abs();
 | |
|   var i = x.t;
 | |
|   r.t = i+y.t;
 | |
|   while(--i >= 0) r.data[i] = 0;
 | |
|   for(i = 0; i < y.t; ++i) r.data[i+x.t] = x.am(0,y.data[i],r,i,0,x.t);
 | |
|   r.s = 0;
 | |
|   r.clamp();
 | |
|   if(this.s != a.s) BigInteger.ZERO.subTo(r,r);
 | |
| }
 | |
| 
 | |
| // (protected) r = this^2, r != this (HAC 14.16)
 | |
| function bnpSquareTo(r) {
 | |
|   var x = this.abs();
 | |
|   var i = r.t = 2*x.t;
 | |
|   while(--i >= 0) r.data[i] = 0;
 | |
|   for(i = 0; i < x.t-1; ++i) {
 | |
|     var c = x.am(i,x.data[i],r,2*i,0,1);
 | |
|     if((r.data[i+x.t]+=x.am(i+1,2*x.data[i],r,2*i+1,c,x.t-i-1)) >= x.DV) {
 | |
|       r.data[i+x.t] -= x.DV;
 | |
|       r.data[i+x.t+1] = 1;
 | |
|     }
 | |
|   }
 | |
|   if(r.t > 0) r.data[r.t-1] += x.am(i,x.data[i],r,2*i,0,1);
 | |
|   r.s = 0;
 | |
|   r.clamp();
 | |
| }
 | |
| 
 | |
| // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
 | |
| // r != q, this != m.  q or r may be null.
 | |
| function bnpDivRemTo(m,q,r) {
 | |
|   var pm = m.abs();
 | |
|   if(pm.t <= 0) return;
 | |
|   var pt = this.abs();
 | |
|   if(pt.t < pm.t) {
 | |
|     if(q != null) q.fromInt(0);
 | |
|     if(r != null) this.copyTo(r);
 | |
|     return;
 | |
|   }
 | |
|   if(r == null) r = nbi();
 | |
|   var y = nbi(), ts = this.s, ms = m.s;
 | |
|   var nsh = this.DB-nbits(pm.data[pm.t-1]);	// normalize modulus
 | |
|   if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } else { pm.copyTo(y); pt.copyTo(r); }
 | |
|   var ys = y.t;
 | |
|   var y0 = y.data[ys-1];
 | |
|   if(y0 == 0) return;
 | |
|   var yt = y0*(1<<this.F1)+((ys>1)?y.data[ys-2]>>this.F2:0);
 | |
|   var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2;
 | |
|   var i = r.t, j = i-ys, t = (q==null)?nbi():q;
 | |
|   y.dlShiftTo(j,t);
 | |
|   if(r.compareTo(t) >= 0) {
 | |
|     r.data[r.t++] = 1;
 | |
|     r.subTo(t,r);
 | |
|   }
 | |
|   BigInteger.ONE.dlShiftTo(ys,t);
 | |
|   t.subTo(y,y);	// "negative" y so we can replace sub with am later
 | |
|   while(y.t < ys) y.data[y.t++] = 0;
 | |
|   while(--j >= 0) {
 | |
|     // Estimate quotient digit
 | |
|     var qd = (r.data[--i]==y0)?this.DM:Math.floor(r.data[i]*d1+(r.data[i-1]+e)*d2);
 | |
|     if((r.data[i]+=y.am(0,qd,r,j,0,ys)) < qd) {	// Try it out
 | |
|       y.dlShiftTo(j,t);
 | |
|       r.subTo(t,r);
 | |
|       while(r.data[i] < --qd) r.subTo(t,r);
 | |
|     }
 | |
|   }
 | |
|   if(q != null) {
 | |
|     r.drShiftTo(ys,q);
 | |
|     if(ts != ms) BigInteger.ZERO.subTo(q,q);
 | |
|   }
 | |
|   r.t = ys;
 | |
|   r.clamp();
 | |
|   if(nsh > 0) r.rShiftTo(nsh,r);	// Denormalize remainder
 | |
|   if(ts < 0) BigInteger.ZERO.subTo(r,r);
 | |
| }
 | |
| 
 | |
| // (public) this mod a
 | |
| function bnMod(a) {
 | |
|   var r = nbi();
 | |
|   this.abs().divRemTo(a,null,r);
 | |
|   if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r);
 | |
|   return r;
 | |
| }
 | |
| 
 | |
| // Modular reduction using "classic" algorithm
 | |
| function Classic(m) { this.m = m; }
 | |
| function cConvert(x) {
 | |
|   if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
 | |
|   else return x;
 | |
| }
 | |
| function cRevert(x) { return x; }
 | |
| function cReduce(x) { x.divRemTo(this.m,null,x); }
 | |
| function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
 | |
| function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
 | |
| 
 | |
| Classic.prototype.convert = cConvert;
 | |
| Classic.prototype.revert = cRevert;
 | |
| Classic.prototype.reduce = cReduce;
 | |
| Classic.prototype.mulTo = cMulTo;
 | |
| Classic.prototype.sqrTo = cSqrTo;
 | |
| 
 | |
| // (protected) return "-1/this % 2^DB"; useful for Mont. reduction
 | |
| // justification:
 | |
| //         xy == 1 (mod m)
 | |
| //         xy =  1+km
 | |
| //   xy(2-xy) = (1+km)(1-km)
 | |
| // x[y(2-xy)] = 1-k^2m^2
 | |
| // x[y(2-xy)] == 1 (mod m^2)
 | |
| // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
 | |
| // should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
 | |
| // JS multiply "overflows" differently from C/C++, so care is needed here.
 | |
| function bnpInvDigit() {
 | |
|   if(this.t < 1) return 0;
 | |
|   var x = this.data[0];
 | |
|   if((x&1) == 0) return 0;
 | |
|   var y = x&3;		// y == 1/x mod 2^2
 | |
|   y = (y*(2-(x&0xf)*y))&0xf;	// y == 1/x mod 2^4
 | |
|   y = (y*(2-(x&0xff)*y))&0xff;	// y == 1/x mod 2^8
 | |
|   y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff;	// y == 1/x mod 2^16
 | |
|   // last step - calculate inverse mod DV directly;
 | |
|   // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
 | |
|   y = (y*(2-x*y%this.DV))%this.DV;		// y == 1/x mod 2^dbits
 | |
|   // we really want the negative inverse, and -DV < y < DV
 | |
|   return (y>0)?this.DV-y:-y;
 | |
| }
 | |
| 
 | |
| // Montgomery reduction
 | |
| function Montgomery(m) {
 | |
|   this.m = m;
 | |
|   this.mp = m.invDigit();
 | |
|   this.mpl = this.mp&0x7fff;
 | |
|   this.mph = this.mp>>15;
 | |
|   this.um = (1<<(m.DB-15))-1;
 | |
|   this.mt2 = 2*m.t;
 | |
| }
 | |
| 
 | |
| // xR mod m
 | |
| function montConvert(x) {
 | |
|   var r = nbi();
 | |
|   x.abs().dlShiftTo(this.m.t,r);
 | |
|   r.divRemTo(this.m,null,r);
 | |
|   if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r);
 | |
|   return r;
 | |
| }
 | |
| 
 | |
| // x/R mod m
 | |
| function montRevert(x) {
 | |
|   var r = nbi();
 | |
|   x.copyTo(r);
 | |
|   this.reduce(r);
 | |
|   return r;
 | |
| }
 | |
| 
 | |
| // x = x/R mod m (HAC 14.32)
 | |
| function montReduce(x) {
 | |
|   while(x.t <= this.mt2)	// pad x so am has enough room later
 | |
|     x.data[x.t++] = 0;
 | |
|   for(var i = 0; i < this.m.t; ++i) {
 | |
|     // faster way of calculating u0 = x.data[i]*mp mod DV
 | |
|     var j = x.data[i]&0x7fff;
 | |
|     var u0 = (j*this.mpl+(((j*this.mph+(x.data[i]>>15)*this.mpl)&this.um)<<15))&x.DM;
 | |
|     // use am to combine the multiply-shift-add into one call
 | |
|     j = i+this.m.t;
 | |
|     x.data[j] += this.m.am(0,u0,x,i,0,this.m.t);
 | |
|     // propagate carry
 | |
|     while(x.data[j] >= x.DV) { x.data[j] -= x.DV; x.data[++j]++; }
 | |
|   }
 | |
|   x.clamp();
 | |
|   x.drShiftTo(this.m.t,x);
 | |
|   if(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
 | |
| }
 | |
| 
 | |
| // r = "x^2/R mod m"; x != r
 | |
| function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
 | |
| 
 | |
| // r = "xy/R mod m"; x,y != r
 | |
| function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
 | |
| 
 | |
| Montgomery.prototype.convert = montConvert;
 | |
| Montgomery.prototype.revert = montRevert;
 | |
| Montgomery.prototype.reduce = montReduce;
 | |
| Montgomery.prototype.mulTo = montMulTo;
 | |
| Montgomery.prototype.sqrTo = montSqrTo;
 | |
| 
 | |
| // (protected) true iff this is even
 | |
| function bnpIsEven() { return ((this.t>0)?(this.data[0]&1):this.s) == 0; }
 | |
| 
 | |
| // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
 | |
| function bnpExp(e,z) {
 | |
|   if(e > 0xffffffff || e < 1) return BigInteger.ONE;
 | |
|   var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1;
 | |
|   g.copyTo(r);
 | |
|   while(--i >= 0) {
 | |
|     z.sqrTo(r,r2);
 | |
|     if((e&(1<<i)) > 0) z.mulTo(r2,g,r);
 | |
|     else { var t = r; r = r2; r2 = t; }
 | |
|   }
 | |
|   return z.revert(r);
 | |
| }
 | |
| 
 | |
| // (public) this^e % m, 0 <= e < 2^32
 | |
| function bnModPowInt(e,m) {
 | |
|   var z;
 | |
|   if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m);
 | |
|   return this.exp(e,z);
 | |
| }
 | |
| 
 | |
| // protected
 | |
| BigInteger.prototype.copyTo = bnpCopyTo;
 | |
| BigInteger.prototype.fromInt = bnpFromInt;
 | |
| BigInteger.prototype.fromString = bnpFromString;
 | |
| BigInteger.prototype.clamp = bnpClamp;
 | |
| BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
 | |
| BigInteger.prototype.drShiftTo = bnpDRShiftTo;
 | |
| BigInteger.prototype.lShiftTo = bnpLShiftTo;
 | |
| BigInteger.prototype.rShiftTo = bnpRShiftTo;
 | |
| BigInteger.prototype.subTo = bnpSubTo;
 | |
| BigInteger.prototype.multiplyTo = bnpMultiplyTo;
 | |
| BigInteger.prototype.squareTo = bnpSquareTo;
 | |
| BigInteger.prototype.divRemTo = bnpDivRemTo;
 | |
| BigInteger.prototype.invDigit = bnpInvDigit;
 | |
| BigInteger.prototype.isEven = bnpIsEven;
 | |
| BigInteger.prototype.exp = bnpExp;
 | |
| 
 | |
| // public
 | |
| BigInteger.prototype.toString = bnToString;
 | |
| BigInteger.prototype.negate = bnNegate;
 | |
| BigInteger.prototype.abs = bnAbs;
 | |
| BigInteger.prototype.compareTo = bnCompareTo;
 | |
| BigInteger.prototype.bitLength = bnBitLength;
 | |
| BigInteger.prototype.mod = bnMod;
 | |
| BigInteger.prototype.modPowInt = bnModPowInt;
 | |
| 
 | |
| // "constants"
 | |
| BigInteger.ZERO = nbv(0);
 | |
| BigInteger.ONE = nbv(1);
 | |
| 
 | |
| // jsbn2 lib
 | |
| 
 | |
| //Copyright (c) 2005-2009  Tom Wu
 | |
| //All Rights Reserved.
 | |
| //See "LICENSE" for details (See jsbn.js for LICENSE).
 | |
| 
 | |
| //Extended JavaScript BN functions, required for RSA private ops.
 | |
| 
 | |
| //Version 1.1: new BigInteger("0", 10) returns "proper" zero
 | |
| 
 | |
| //(public)
 | |
| function bnClone() { var r = nbi(); this.copyTo(r); return r; }
 | |
| 
 | |
| //(public) return value as integer
 | |
| function bnIntValue() {
 | |
| if(this.s < 0) {
 | |
|  if(this.t == 1) return this.data[0]-this.DV;
 | |
|  else if(this.t == 0) return -1;
 | |
| } else if(this.t == 1) return this.data[0];
 | |
| else if(this.t == 0) return 0;
 | |
| // assumes 16 < DB < 32
 | |
| return ((this.data[1]&((1<<(32-this.DB))-1))<<this.DB)|this.data[0];
 | |
| }
 | |
| 
 | |
| //(public) return value as byte
 | |
| function bnByteValue() { return (this.t==0)?this.s:(this.data[0]<<24)>>24; }
 | |
| 
 | |
| //(public) return value as short (assumes DB>=16)
 | |
| function bnShortValue() { return (this.t==0)?this.s:(this.data[0]<<16)>>16; }
 | |
| 
 | |
| //(protected) return x s.t. r^x < DV
 | |
| function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); }
 | |
| 
 | |
| //(public) 0 if this == 0, 1 if this > 0
 | |
| function bnSigNum() {
 | |
| if(this.s < 0) return -1;
 | |
| else if(this.t <= 0 || (this.t == 1 && this.data[0] <= 0)) return 0;
 | |
| else return 1;
 | |
| }
 | |
| 
 | |
| //(protected) convert to radix string
 | |
| function bnpToRadix(b) {
 | |
| if(b == null) b = 10;
 | |
| if(this.signum() == 0 || b < 2 || b > 36) return "0";
 | |
| var cs = this.chunkSize(b);
 | |
| var a = Math.pow(b,cs);
 | |
| var d = nbv(a), y = nbi(), z = nbi(), r = "";
 | |
| this.divRemTo(d,y,z);
 | |
| while(y.signum() > 0) {
 | |
|  r = (a+z.intValue()).toString(b).substr(1) + r;
 | |
|  y.divRemTo(d,y,z);
 | |
| }
 | |
| return z.intValue().toString(b) + r;
 | |
| }
 | |
| 
 | |
| //(protected) convert from radix string
 | |
| function bnpFromRadix(s,b) {
 | |
| this.fromInt(0);
 | |
| if(b == null) b = 10;
 | |
| var cs = this.chunkSize(b);
 | |
| var d = Math.pow(b,cs), mi = false, j = 0, w = 0;
 | |
| for(var i = 0; i < s.length; ++i) {
 | |
|  var x = intAt(s,i);
 | |
|  if(x < 0) {
 | |
|    if(s.charAt(i) == "-" && this.signum() == 0) mi = true;
 | |
|    continue;
 | |
|  }
 | |
|  w = b*w+x;
 | |
|  if(++j >= cs) {
 | |
|    this.dMultiply(d);
 | |
|    this.dAddOffset(w,0);
 | |
|    j = 0;
 | |
|    w = 0;
 | |
|  }
 | |
| }
 | |
| if(j > 0) {
 | |
|  this.dMultiply(Math.pow(b,j));
 | |
|  this.dAddOffset(w,0);
 | |
| }
 | |
| if(mi) BigInteger.ZERO.subTo(this,this);
 | |
| }
 | |
| 
 | |
| //(protected) alternate constructor
 | |
| function bnpFromNumber(a,b,c) {
 | |
| if("number" == typeof b) {
 | |
|  // new BigInteger(int,int,RNG)
 | |
|  if(a < 2) this.fromInt(1);
 | |
|  else {
 | |
|    this.fromNumber(a,c);
 | |
|    if(!this.testBit(a-1))  // force MSB set
 | |
|      this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this);
 | |
|    if(this.isEven()) this.dAddOffset(1,0); // force odd
 | |
|    while(!this.isProbablePrime(b)) {
 | |
|      this.dAddOffset(2,0);
 | |
|      if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this);
 | |
|    }
 | |
|  }
 | |
| } else {
 | |
|  // new BigInteger(int,RNG)
 | |
|  var x = new Array(), t = a&7;
 | |
|  x.length = (a>>3)+1;
 | |
|  b.nextBytes(x);
 | |
|  if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0;
 | |
|  this.fromString(x,256);
 | |
| }
 | |
| }
 | |
| 
 | |
| //(public) convert to bigendian byte array
 | |
| function bnToByteArray() {
 | |
| var i = this.t, r = new Array();
 | |
| r[0] = this.s;
 | |
| var p = this.DB-(i*this.DB)%8, d, k = 0;
 | |
| if(i-- > 0) {
 | |
|  if(p < this.DB && (d = this.data[i]>>p) != (this.s&this.DM)>>p)
 | |
|    r[k++] = d|(this.s<<(this.DB-p));
 | |
|  while(i >= 0) {
 | |
|    if(p < 8) {
 | |
|      d = (this.data[i]&((1<<p)-1))<<(8-p);
 | |
|      d |= this.data[--i]>>(p+=this.DB-8);
 | |
|    } else {
 | |
|      d = (this.data[i]>>(p-=8))&0xff;
 | |
|      if(p <= 0) { p += this.DB; --i; }
 | |
|    }
 | |
|    if((d&0x80) != 0) d |= -256;
 | |
|    if(k == 0 && (this.s&0x80) != (d&0x80)) ++k;
 | |
|    if(k > 0 || d != this.s) r[k++] = d;
 | |
|  }
 | |
| }
 | |
| return r;
 | |
| }
 | |
| 
 | |
| function bnEquals(a) { return(this.compareTo(a)==0); }
 | |
| function bnMin(a) { return(this.compareTo(a)<0)?this:a; }
 | |
| function bnMax(a) { return(this.compareTo(a)>0)?this:a; }
 | |
| 
 | |
| //(protected) r = this op a (bitwise)
 | |
| function bnpBitwiseTo(a,op,r) {
 | |
| var i, f, m = Math.min(a.t,this.t);
 | |
| for(i = 0; i < m; ++i) r.data[i] = op(this.data[i],a.data[i]);
 | |
| if(a.t < this.t) {
 | |
|  f = a.s&this.DM;
 | |
|  for(i = m; i < this.t; ++i) r.data[i] = op(this.data[i],f);
 | |
|  r.t = this.t;
 | |
| } else {
 | |
|  f = this.s&this.DM;
 | |
|  for(i = m; i < a.t; ++i) r.data[i] = op(f,a.data[i]);
 | |
|  r.t = a.t;
 | |
| }
 | |
| r.s = op(this.s,a.s);
 | |
| r.clamp();
 | |
| }
 | |
| 
 | |
| //(public) this & a
 | |
| function op_and(x,y) { return x&y; }
 | |
| function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; }
 | |
| 
 | |
| //(public) this | a
 | |
| function op_or(x,y) { return x|y; }
 | |
| function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; }
 | |
| 
 | |
| //(public) this ^ a
 | |
| function op_xor(x,y) { return x^y; }
 | |
| function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; }
 | |
| 
 | |
| //(public) this & ~a
 | |
| function op_andnot(x,y) { return x&~y; }
 | |
| function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; }
 | |
| 
 | |
| //(public) ~this
 | |
| function bnNot() {
 | |
| var r = nbi();
 | |
| for(var i = 0; i < this.t; ++i) r.data[i] = this.DM&~this.data[i];
 | |
| r.t = this.t;
 | |
| r.s = ~this.s;
 | |
| return r;
 | |
| }
 | |
| 
 | |
| //(public) this << n
 | |
| function bnShiftLeft(n) {
 | |
| var r = nbi();
 | |
| if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r);
 | |
| return r;
 | |
| }
 | |
| 
 | |
| //(public) this >> n
 | |
| function bnShiftRight(n) {
 | |
| var r = nbi();
 | |
| if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r);
 | |
| return r;
 | |
| }
 | |
| 
 | |
| //return index of lowest 1-bit in x, x < 2^31
 | |
| function lbit(x) {
 | |
| if(x == 0) return -1;
 | |
| var r = 0;
 | |
| if((x&0xffff) == 0) { x >>= 16; r += 16; }
 | |
| if((x&0xff) == 0) { x >>= 8; r += 8; }
 | |
| if((x&0xf) == 0) { x >>= 4; r += 4; }
 | |
| if((x&3) == 0) { x >>= 2; r += 2; }
 | |
| if((x&1) == 0) ++r;
 | |
| return r;
 | |
| }
 | |
| 
 | |
| //(public) returns index of lowest 1-bit (or -1 if none)
 | |
| function bnGetLowestSetBit() {
 | |
| for(var i = 0; i < this.t; ++i)
 | |
|  if(this.data[i] != 0) return i*this.DB+lbit(this.data[i]);
 | |
| if(this.s < 0) return this.t*this.DB;
 | |
| return -1;
 | |
| }
 | |
| 
 | |
| //return number of 1 bits in x
 | |
| function cbit(x) {
 | |
| var r = 0;
 | |
| while(x != 0) { x &= x-1; ++r; }
 | |
| return r;
 | |
| }
 | |
| 
 | |
| //(public) return number of set bits
 | |
| function bnBitCount() {
 | |
| var r = 0, x = this.s&this.DM;
 | |
| for(var i = 0; i < this.t; ++i) r += cbit(this.data[i]^x);
 | |
| return r;
 | |
| }
 | |
| 
 | |
| //(public) true iff nth bit is set
 | |
| function bnTestBit(n) {
 | |
| var j = Math.floor(n/this.DB);
 | |
| if(j >= this.t) return(this.s!=0);
 | |
| return((this.data[j]&(1<<(n%this.DB)))!=0);
 | |
| }
 | |
| 
 | |
| //(protected) this op (1<<n)
 | |
| function bnpChangeBit(n,op) {
 | |
| var r = BigInteger.ONE.shiftLeft(n);
 | |
| this.bitwiseTo(r,op,r);
 | |
| return r;
 | |
| }
 | |
| 
 | |
| //(public) this | (1<<n)
 | |
| function bnSetBit(n) { return this.changeBit(n,op_or); }
 | |
| 
 | |
| //(public) this & ~(1<<n)
 | |
| function bnClearBit(n) { return this.changeBit(n,op_andnot); }
 | |
| 
 | |
| //(public) this ^ (1<<n)
 | |
| function bnFlipBit(n) { return this.changeBit(n,op_xor); }
 | |
| 
 | |
| //(protected) r = this + a
 | |
| function bnpAddTo(a,r) {
 | |
| var i = 0, c = 0, m = Math.min(a.t,this.t);
 | |
| while(i < m) {
 | |
|  c += this.data[i]+a.data[i];
 | |
|  r.data[i++] = c&this.DM;
 | |
|  c >>= this.DB;
 | |
| }
 | |
| if(a.t < this.t) {
 | |
|  c += a.s;
 | |
|  while(i < this.t) {
 | |
|    c += this.data[i];
 | |
|    r.data[i++] = c&this.DM;
 | |
|    c >>= this.DB;
 | |
|  }
 | |
|  c += this.s;
 | |
| } else {
 | |
|  c += this.s;
 | |
|  while(i < a.t) {
 | |
|    c += a.data[i];
 | |
|    r.data[i++] = c&this.DM;
 | |
|    c >>= this.DB;
 | |
|  }
 | |
|  c += a.s;
 | |
| }
 | |
| r.s = (c<0)?-1:0;
 | |
| if(c > 0) r.data[i++] = c;
 | |
| else if(c < -1) r.data[i++] = this.DV+c;
 | |
| r.t = i;
 | |
| r.clamp();
 | |
| }
 | |
| 
 | |
| //(public) this + a
 | |
| function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; }
 | |
| 
 | |
| //(public) this - a
 | |
| function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; }
 | |
| 
 | |
| //(public) this * a
 | |
| function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; }
 | |
| 
 | |
| //(public) this / a
 | |
| function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; }
 | |
| 
 | |
| //(public) this % a
 | |
| function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; }
 | |
| 
 | |
| //(public) [this/a,this%a]
 | |
| function bnDivideAndRemainder(a) {
 | |
| var q = nbi(), r = nbi();
 | |
| this.divRemTo(a,q,r);
 | |
| return new Array(q,r);
 | |
| }
 | |
| 
 | |
| //(protected) this *= n, this >= 0, 1 < n < DV
 | |
| function bnpDMultiply(n) {
 | |
| this.data[this.t] = this.am(0,n-1,this,0,0,this.t);
 | |
| ++this.t;
 | |
| this.clamp();
 | |
| }
 | |
| 
 | |
| //(protected) this += n << w words, this >= 0
 | |
| function bnpDAddOffset(n,w) {
 | |
| if(n == 0) return;
 | |
| while(this.t <= w) this.data[this.t++] = 0;
 | |
| this.data[w] += n;
 | |
| while(this.data[w] >= this.DV) {
 | |
|  this.data[w] -= this.DV;
 | |
|  if(++w >= this.t) this.data[this.t++] = 0;
 | |
|  ++this.data[w];
 | |
| }
 | |
| }
 | |
| 
 | |
| //A "null" reducer
 | |
| function NullExp() {}
 | |
| function nNop(x) { return x; }
 | |
| function nMulTo(x,y,r) { x.multiplyTo(y,r); }
 | |
| function nSqrTo(x,r) { x.squareTo(r); }
 | |
| 
 | |
| NullExp.prototype.convert = nNop;
 | |
| NullExp.prototype.revert = nNop;
 | |
| NullExp.prototype.mulTo = nMulTo;
 | |
| NullExp.prototype.sqrTo = nSqrTo;
 | |
| 
 | |
| //(public) this^e
 | |
| function bnPow(e) { return this.exp(e,new NullExp()); }
 | |
| 
 | |
| //(protected) r = lower n words of "this * a", a.t <= n
 | |
| //"this" should be the larger one if appropriate.
 | |
| function bnpMultiplyLowerTo(a,n,r) {
 | |
| var i = Math.min(this.t+a.t,n);
 | |
| r.s = 0; // assumes a,this >= 0
 | |
| r.t = i;
 | |
| while(i > 0) r.data[--i] = 0;
 | |
| var j;
 | |
| for(j = r.t-this.t; i < j; ++i) r.data[i+this.t] = this.am(0,a.data[i],r,i,0,this.t);
 | |
| for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a.data[i],r,i,0,n-i);
 | |
| r.clamp();
 | |
| }
 | |
| 
 | |
| //(protected) r = "this * a" without lower n words, n > 0
 | |
| //"this" should be the larger one if appropriate.
 | |
| function bnpMultiplyUpperTo(a,n,r) {
 | |
| --n;
 | |
| var i = r.t = this.t+a.t-n;
 | |
| r.s = 0; // assumes a,this >= 0
 | |
| while(--i >= 0) r.data[i] = 0;
 | |
| for(i = Math.max(n-this.t,0); i < a.t; ++i)
 | |
|  r.data[this.t+i-n] = this.am(n-i,a.data[i],r,0,0,this.t+i-n);
 | |
| r.clamp();
 | |
| r.drShiftTo(1,r);
 | |
| }
 | |
| 
 | |
| //Barrett modular reduction
 | |
| function Barrett(m) {
 | |
| // setup Barrett
 | |
| this.r2 = nbi();
 | |
| this.q3 = nbi();
 | |
| BigInteger.ONE.dlShiftTo(2*m.t,this.r2);
 | |
| this.mu = this.r2.divide(m);
 | |
| this.m = m;
 | |
| }
 | |
| 
 | |
| function barrettConvert(x) {
 | |
| if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m);
 | |
| else if(x.compareTo(this.m) < 0) return x;
 | |
| else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; }
 | |
| }
 | |
| 
 | |
| function barrettRevert(x) { return x; }
 | |
| 
 | |
| //x = x mod m (HAC 14.42)
 | |
| function barrettReduce(x) {
 | |
| x.drShiftTo(this.m.t-1,this.r2);
 | |
| if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); }
 | |
| this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3);
 | |
| this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2);
 | |
| while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1);
 | |
| x.subTo(this.r2,x);
 | |
| while(x.compareTo(this.m) >= 0) x.subTo(this.m,x);
 | |
| }
 | |
| 
 | |
| //r = x^2 mod m; x != r
 | |
| function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); }
 | |
| 
 | |
| //r = x*y mod m; x,y != r
 | |
| function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); }
 | |
| 
 | |
| Barrett.prototype.convert = barrettConvert;
 | |
| Barrett.prototype.revert = barrettRevert;
 | |
| Barrett.prototype.reduce = barrettReduce;
 | |
| Barrett.prototype.mulTo = barrettMulTo;
 | |
| Barrett.prototype.sqrTo = barrettSqrTo;
 | |
| 
 | |
| //(public) this^e % m (HAC 14.85)
 | |
| function bnModPow(e,m) {
 | |
| var i = e.bitLength(), k, r = nbv(1), z;
 | |
| if(i <= 0) return r;
 | |
| else if(i < 18) k = 1;
 | |
| else if(i < 48) k = 3;
 | |
| else if(i < 144) k = 4;
 | |
| else if(i < 768) k = 5;
 | |
| else k = 6;
 | |
| if(i < 8)
 | |
|  z = new Classic(m);
 | |
| else if(m.isEven())
 | |
|  z = new Barrett(m);
 | |
| else
 | |
|  z = new Montgomery(m);
 | |
| 
 | |
| // precomputation
 | |
| var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1;
 | |
| g[1] = z.convert(this);
 | |
| if(k > 1) {
 | |
|  var g2 = nbi();
 | |
|  z.sqrTo(g[1],g2);
 | |
|  while(n <= km) {
 | |
|    g[n] = nbi();
 | |
|    z.mulTo(g2,g[n-2],g[n]);
 | |
|    n += 2;
 | |
|  }
 | |
| }
 | |
| 
 | |
| var j = e.t-1, w, is1 = true, r2 = nbi(), t;
 | |
| i = nbits(e.data[j])-1;
 | |
| while(j >= 0) {
 | |
|  if(i >= k1) w = (e.data[j]>>(i-k1))&km;
 | |
|  else {
 | |
|    w = (e.data[j]&((1<<(i+1))-1))<<(k1-i);
 | |
|    if(j > 0) w |= e.data[j-1]>>(this.DB+i-k1);
 | |
|  }
 | |
| 
 | |
|  n = k;
 | |
|  while((w&1) == 0) { w >>= 1; --n; }
 | |
|  if((i -= n) < 0) { i += this.DB; --j; }
 | |
|  if(is1) {  // ret == 1, don't bother squaring or multiplying it
 | |
|    g[w].copyTo(r);
 | |
|    is1 = false;
 | |
|  } else {
 | |
|    while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; }
 | |
|    if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; }
 | |
|    z.mulTo(r2,g[w],r);
 | |
|  }
 | |
| 
 | |
|  while(j >= 0 && (e.data[j]&(1<<i)) == 0) {
 | |
|    z.sqrTo(r,r2); t = r; r = r2; r2 = t;
 | |
|    if(--i < 0) { i = this.DB-1; --j; }
 | |
|  }
 | |
| }
 | |
| return z.revert(r);
 | |
| }
 | |
| 
 | |
| //(public) gcd(this,a) (HAC 14.54)
 | |
| function bnGCD(a) {
 | |
| var x = (this.s<0)?this.negate():this.clone();
 | |
| var y = (a.s<0)?a.negate():a.clone();
 | |
| if(x.compareTo(y) < 0) { var t = x; x = y; y = t; }
 | |
| var i = x.getLowestSetBit(), g = y.getLowestSetBit();
 | |
| if(g < 0) return x;
 | |
| if(i < g) g = i;
 | |
| if(g > 0) {
 | |
|  x.rShiftTo(g,x);
 | |
|  y.rShiftTo(g,y);
 | |
| }
 | |
| while(x.signum() > 0) {
 | |
|  if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x);
 | |
|  if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y);
 | |
|  if(x.compareTo(y) >= 0) {
 | |
|    x.subTo(y,x);
 | |
|    x.rShiftTo(1,x);
 | |
|  } else {
 | |
|    y.subTo(x,y);
 | |
|    y.rShiftTo(1,y);
 | |
|  }
 | |
| }
 | |
| if(g > 0) y.lShiftTo(g,y);
 | |
| return y;
 | |
| }
 | |
| 
 | |
| //(protected) this % n, n < 2^26
 | |
| function bnpModInt(n) {
 | |
| if(n <= 0) return 0;
 | |
| var d = this.DV%n, r = (this.s<0)?n-1:0;
 | |
| if(this.t > 0)
 | |
|  if(d == 0) r = this.data[0]%n;
 | |
|  else for(var i = this.t-1; i >= 0; --i) r = (d*r+this.data[i])%n;
 | |
| return r;
 | |
| }
 | |
| 
 | |
| //(public) 1/this % m (HAC 14.61)
 | |
| function bnModInverse(m) {
 | |
| var ac = m.isEven();
 | |
| if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
 | |
| var u = m.clone(), v = this.clone();
 | |
| var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1);
 | |
| while(u.signum() != 0) {
 | |
|  while(u.isEven()) {
 | |
|    u.rShiftTo(1,u);
 | |
|    if(ac) {
 | |
|      if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); }
 | |
|      a.rShiftTo(1,a);
 | |
|    } else if(!b.isEven()) b.subTo(m,b);
 | |
|    b.rShiftTo(1,b);
 | |
|  }
 | |
|  while(v.isEven()) {
 | |
|    v.rShiftTo(1,v);
 | |
|    if(ac) {
 | |
|      if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); }
 | |
|      c.rShiftTo(1,c);
 | |
|    } else if(!d.isEven()) d.subTo(m,d);
 | |
|    d.rShiftTo(1,d);
 | |
|  }
 | |
|  if(u.compareTo(v) >= 0) {
 | |
|    u.subTo(v,u);
 | |
|    if(ac) a.subTo(c,a);
 | |
|    b.subTo(d,b);
 | |
|  } else {
 | |
|    v.subTo(u,v);
 | |
|    if(ac) c.subTo(a,c);
 | |
|    d.subTo(b,d);
 | |
|  }
 | |
| }
 | |
| if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
 | |
| if(d.compareTo(m) >= 0) return d.subtract(m);
 | |
| if(d.signum() < 0) d.addTo(m,d); else return d;
 | |
| if(d.signum() < 0) return d.add(m); else return d;
 | |
| }
 | |
| 
 | |
| var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509];
 | |
| var lplim = (1<<26)/lowprimes[lowprimes.length-1];
 | |
| 
 | |
| //(public) test primality with certainty >= 1-.5^t
 | |
| function bnIsProbablePrime(t) {
 | |
| var i, x = this.abs();
 | |
| if(x.t == 1 && x.data[0] <= lowprimes[lowprimes.length-1]) {
 | |
|  for(i = 0; i < lowprimes.length; ++i)
 | |
|    if(x.data[0] == lowprimes[i]) return true;
 | |
|  return false;
 | |
| }
 | |
| if(x.isEven()) return false;
 | |
| i = 1;
 | |
| while(i < lowprimes.length) {
 | |
|  var m = lowprimes[i], j = i+1;
 | |
|  while(j < lowprimes.length && m < lplim) m *= lowprimes[j++];
 | |
|  m = x.modInt(m);
 | |
|  while(i < j) if(m%lowprimes[i++] == 0) return false;
 | |
| }
 | |
| return x.millerRabin(t);
 | |
| }
 | |
| 
 | |
| //(protected) true if probably prime (HAC 4.24, Miller-Rabin)
 | |
| function bnpMillerRabin(t) {
 | |
| var n1 = this.subtract(BigInteger.ONE);
 | |
| var k = n1.getLowestSetBit();
 | |
| if(k <= 0) return false;
 | |
| var r = n1.shiftRight(k);
 | |
| var prng = bnGetPrng();
 | |
| var a;
 | |
| for(var i = 0; i < t; ++i) {
 | |
|  // select witness 'a' at random from between 1 and n1
 | |
|  do {
 | |
|    a = new BigInteger(this.bitLength(), prng);
 | |
|  }
 | |
|  while(a.compareTo(BigInteger.ONE) <= 0 || a.compareTo(n1) >= 0);
 | |
|  var y = a.modPow(r,this);
 | |
|  if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) {
 | |
|    var j = 1;
 | |
|    while(j++ < k && y.compareTo(n1) != 0) {
 | |
|      y = y.modPowInt(2,this);
 | |
|      if(y.compareTo(BigInteger.ONE) == 0) return false;
 | |
|    }
 | |
|    if(y.compareTo(n1) != 0) return false;
 | |
|  }
 | |
| }
 | |
| return true;
 | |
| }
 | |
| 
 | |
| // get pseudo random number generator
 | |
| function bnGetPrng() {
 | |
|   // create prng with api that matches BigInteger secure random
 | |
|   return {
 | |
|     // x is an array to fill with bytes
 | |
|     nextBytes: function(x) {
 | |
|       for(var i = 0; i < x.length; ++i) {
 | |
|         x[i] = Math.floor(Math.random() * 0x0100);
 | |
|       }
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| //protected
 | |
| BigInteger.prototype.chunkSize = bnpChunkSize;
 | |
| BigInteger.prototype.toRadix = bnpToRadix;
 | |
| BigInteger.prototype.fromRadix = bnpFromRadix;
 | |
| BigInteger.prototype.fromNumber = bnpFromNumber;
 | |
| BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
 | |
| BigInteger.prototype.changeBit = bnpChangeBit;
 | |
| BigInteger.prototype.addTo = bnpAddTo;
 | |
| BigInteger.prototype.dMultiply = bnpDMultiply;
 | |
| BigInteger.prototype.dAddOffset = bnpDAddOffset;
 | |
| BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
 | |
| BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
 | |
| BigInteger.prototype.modInt = bnpModInt;
 | |
| BigInteger.prototype.millerRabin = bnpMillerRabin;
 | |
| 
 | |
| //public
 | |
| BigInteger.prototype.clone = bnClone;
 | |
| BigInteger.prototype.intValue = bnIntValue;
 | |
| BigInteger.prototype.byteValue = bnByteValue;
 | |
| BigInteger.prototype.shortValue = bnShortValue;
 | |
| BigInteger.prototype.signum = bnSigNum;
 | |
| BigInteger.prototype.toByteArray = bnToByteArray;
 | |
| BigInteger.prototype.equals = bnEquals;
 | |
| BigInteger.prototype.min = bnMin;
 | |
| BigInteger.prototype.max = bnMax;
 | |
| BigInteger.prototype.and = bnAnd;
 | |
| BigInteger.prototype.or = bnOr;
 | |
| BigInteger.prototype.xor = bnXor;
 | |
| BigInteger.prototype.andNot = bnAndNot;
 | |
| BigInteger.prototype.not = bnNot;
 | |
| BigInteger.prototype.shiftLeft = bnShiftLeft;
 | |
| BigInteger.prototype.shiftRight = bnShiftRight;
 | |
| BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
 | |
| BigInteger.prototype.bitCount = bnBitCount;
 | |
| BigInteger.prototype.testBit = bnTestBit;
 | |
| BigInteger.prototype.setBit = bnSetBit;
 | |
| BigInteger.prototype.clearBit = bnClearBit;
 | |
| BigInteger.prototype.flipBit = bnFlipBit;
 | |
| BigInteger.prototype.add = bnAdd;
 | |
| BigInteger.prototype.subtract = bnSubtract;
 | |
| BigInteger.prototype.multiply = bnMultiply;
 | |
| BigInteger.prototype.divide = bnDivide;
 | |
| BigInteger.prototype.remainder = bnRemainder;
 | |
| BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
 | |
| BigInteger.prototype.modPow = bnModPow;
 | |
| BigInteger.prototype.modInverse = bnModInverse;
 | |
| BigInteger.prototype.pow = bnPow;
 | |
| BigInteger.prototype.gcd = bnGCD;
 | |
| BigInteger.prototype.isProbablePrime = bnIsProbablePrime;
 | |
| 
 | |
| //BigInteger interfaces not implemented in jsbn:
 | |
| 
 | |
| //BigInteger(int signum, byte[] magnitude)
 | |
| //double doubleValue()
 | |
| //float floatValue()
 | |
| //int hashCode()
 | |
| //long longValue()
 | |
| //static BigInteger valueOf(long val)
 |