4283 lines
		
	
	
		
			130 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			4283 lines
		
	
	
		
			130 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| /**
 | |
|  * A Javascript implementation of Transport Layer Security (TLS).
 | |
|  *
 | |
|  * @author Dave Longley
 | |
|  *
 | |
|  * Copyright (c) 2009-2014 Digital Bazaar, Inc.
 | |
|  *
 | |
|  * The TLS Handshake Protocol involves the following steps:
 | |
|  *
 | |
|  * - Exchange hello messages to agree on algorithms, exchange random values,
 | |
|  * and check for session resumption.
 | |
|  *
 | |
|  * - Exchange the necessary cryptographic parameters to allow the client and
 | |
|  * server to agree on a premaster secret.
 | |
|  *
 | |
|  * - Exchange certificates and cryptographic information to allow the client
 | |
|  * and server to authenticate themselves.
 | |
|  *
 | |
|  * - Generate a master secret from the premaster secret and exchanged random
 | |
|  * values.
 | |
|  *
 | |
|  * - Provide security parameters to the record layer.
 | |
|  *
 | |
|  * - Allow the client and server to verify that their peer has calculated the
 | |
|  * same security parameters and that the handshake occurred without tampering
 | |
|  * by an attacker.
 | |
|  *
 | |
|  * Up to 4 different messages may be sent during a key exchange. The server
 | |
|  * certificate, the server key exchange, the client certificate, and the
 | |
|  * client key exchange.
 | |
|  *
 | |
|  * A typical handshake (from the client's perspective).
 | |
|  *
 | |
|  * 1. Client sends ClientHello.
 | |
|  * 2. Client receives ServerHello.
 | |
|  * 3. Client receives optional Certificate.
 | |
|  * 4. Client receives optional ServerKeyExchange.
 | |
|  * 5. Client receives ServerHelloDone.
 | |
|  * 6. Client sends optional Certificate.
 | |
|  * 7. Client sends ClientKeyExchange.
 | |
|  * 8. Client sends optional CertificateVerify.
 | |
|  * 9. Client sends ChangeCipherSpec.
 | |
|  * 10. Client sends Finished.
 | |
|  * 11. Client receives ChangeCipherSpec.
 | |
|  * 12. Client receives Finished.
 | |
|  * 13. Client sends/receives application data.
 | |
|  *
 | |
|  * To reuse an existing session:
 | |
|  *
 | |
|  * 1. Client sends ClientHello with session ID for reuse.
 | |
|  * 2. Client receives ServerHello with same session ID if reusing.
 | |
|  * 3. Client receives ChangeCipherSpec message if reusing.
 | |
|  * 4. Client receives Finished.
 | |
|  * 5. Client sends ChangeCipherSpec.
 | |
|  * 6. Client sends Finished.
 | |
|  *
 | |
|  * Note: Client ignores HelloRequest if in the middle of a handshake.
 | |
|  *
 | |
|  * Record Layer:
 | |
|  *
 | |
|  * The record layer fragments information blocks into TLSPlaintext records
 | |
|  * carrying data in chunks of 2^14 bytes or less. Client message boundaries are
 | |
|  * not preserved in the record layer (i.e., multiple client messages of the
 | |
|  * same ContentType MAY be coalesced into a single TLSPlaintext record, or a
 | |
|  * single message MAY be fragmented across several records).
 | |
|  *
 | |
|  * struct {
 | |
|  *   uint8 major;
 | |
|  *   uint8 minor;
 | |
|  * } ProtocolVersion;
 | |
|  *
 | |
|  * struct {
 | |
|  *   ContentType type;
 | |
|  *   ProtocolVersion version;
 | |
|  *   uint16 length;
 | |
|  *   opaque fragment[TLSPlaintext.length];
 | |
|  * } TLSPlaintext;
 | |
|  *
 | |
|  * type:
 | |
|  *   The higher-level protocol used to process the enclosed fragment.
 | |
|  *
 | |
|  * version:
 | |
|  *   The version of the protocol being employed. TLS Version 1.2 uses version
 | |
|  *   {3, 3}. TLS Version 1.0 uses version {3, 1}. Note that a client that
 | |
|  *   supports multiple versions of TLS may not know what version will be
 | |
|  *   employed before it receives the ServerHello.
 | |
|  *
 | |
|  * length:
 | |
|  *   The length (in bytes) of the following TLSPlaintext.fragment. The length
 | |
|  *   MUST NOT exceed 2^14 = 16384 bytes.
 | |
|  *
 | |
|  * fragment:
 | |
|  *   The application data. This data is transparent and treated as an
 | |
|  *   independent block to be dealt with by the higher-level protocol specified
 | |
|  *   by the type field.
 | |
|  *
 | |
|  * Implementations MUST NOT send zero-length fragments of Handshake, Alert, or
 | |
|  * ChangeCipherSpec content types. Zero-length fragments of Application data
 | |
|  * MAY be sent as they are potentially useful as a traffic analysis
 | |
|  * countermeasure.
 | |
|  *
 | |
|  * Note: Data of different TLS record layer content types MAY be interleaved.
 | |
|  * Application data is generally of lower precedence for transmission than
 | |
|  * other content types. However, records MUST be delivered to the network in
 | |
|  * the same order as they are protected by the record layer. Recipients MUST
 | |
|  * receive and process interleaved application layer traffic during handshakes
 | |
|  * subsequent to the first one on a connection.
 | |
|  *
 | |
|  * struct {
 | |
|  *   ContentType type;       // same as TLSPlaintext.type
 | |
|  *   ProtocolVersion version;// same as TLSPlaintext.version
 | |
|  *   uint16 length;
 | |
|  *   opaque fragment[TLSCompressed.length];
 | |
|  * } TLSCompressed;
 | |
|  *
 | |
|  * length:
 | |
|  *   The length (in bytes) of the following TLSCompressed.fragment.
 | |
|  *   The length MUST NOT exceed 2^14 + 1024.
 | |
|  *
 | |
|  * fragment:
 | |
|  *   The compressed form of TLSPlaintext.fragment.
 | |
|  *
 | |
|  * Note: A CompressionMethod.null operation is an identity operation; no fields
 | |
|  * are altered. In this implementation, since no compression is supported,
 | |
|  * uncompressed records are always the same as compressed records.
 | |
|  *
 | |
|  * Encryption Information:
 | |
|  *
 | |
|  * The encryption and MAC functions translate a TLSCompressed structure into a
 | |
|  * TLSCiphertext. The decryption functions reverse the process. The MAC of the
 | |
|  * record also includes a sequence number so that missing, extra, or repeated
 | |
|  * messages are detectable.
 | |
|  *
 | |
|  * struct {
 | |
|  *   ContentType type;
 | |
|  *   ProtocolVersion version;
 | |
|  *   uint16 length;
 | |
|  *   select (SecurityParameters.cipher_type) {
 | |
|  *     case stream: GenericStreamCipher;
 | |
|  *     case block:  GenericBlockCipher;
 | |
|  *     case aead:   GenericAEADCipher;
 | |
|  *   } fragment;
 | |
|  * } TLSCiphertext;
 | |
|  *
 | |
|  * type:
 | |
|  *   The type field is identical to TLSCompressed.type.
 | |
|  *
 | |
|  * version:
 | |
|  *   The version field is identical to TLSCompressed.version.
 | |
|  *
 | |
|  * length:
 | |
|  *   The length (in bytes) of the following TLSCiphertext.fragment.
 | |
|  *   The length MUST NOT exceed 2^14 + 2048.
 | |
|  *
 | |
|  * fragment:
 | |
|  *   The encrypted form of TLSCompressed.fragment, with the MAC.
 | |
|  *
 | |
|  * Note: Only CBC Block Ciphers are supported by this implementation.
 | |
|  *
 | |
|  * The TLSCompressed.fragment structures are converted to/from block
 | |
|  * TLSCiphertext.fragment structures.
 | |
|  *
 | |
|  * struct {
 | |
|  *   opaque IV[SecurityParameters.record_iv_length];
 | |
|  *   block-ciphered struct {
 | |
|  *     opaque content[TLSCompressed.length];
 | |
|  *     opaque MAC[SecurityParameters.mac_length];
 | |
|  *     uint8 padding[GenericBlockCipher.padding_length];
 | |
|  *     uint8 padding_length;
 | |
|  *   };
 | |
|  * } GenericBlockCipher;
 | |
|  *
 | |
|  * The MAC is generated as described in Section 6.2.3.1.
 | |
|  *
 | |
|  * IV:
 | |
|  *   The Initialization Vector (IV) SHOULD be chosen at random, and MUST be
 | |
|  *   unpredictable. Note that in versions of TLS prior to 1.1, there was no
 | |
|  *   IV field, and the last ciphertext block of the previous record (the "CBC
 | |
|  *   residue") was used as the IV. This was changed to prevent the attacks
 | |
|  *   described in [CBCATT]. For block ciphers, the IV length is of length
 | |
|  *   SecurityParameters.record_iv_length, which is equal to the
 | |
|  *   SecurityParameters.block_size.
 | |
|  *
 | |
|  * padding:
 | |
|  *   Padding that is added to force the length of the plaintext to be an
 | |
|  *   integral multiple of the block cipher's block length. The padding MAY be
 | |
|  *   any length up to 255 bytes, as long as it results in the
 | |
|  *   TLSCiphertext.length being an integral multiple of the block length.
 | |
|  *   Lengths longer than necessary might be desirable to frustrate attacks on
 | |
|  *   a protocol that are based on analysis of the lengths of exchanged
 | |
|  *   messages. Each uint8 in the padding data vector MUST be filled with the
 | |
|  *   padding length value. The receiver MUST check this padding and MUST use
 | |
|  *   the bad_record_mac alert to indicate padding errors.
 | |
|  *
 | |
|  * padding_length:
 | |
|  *   The padding length MUST be such that the total size of the
 | |
|  *   GenericBlockCipher structure is a multiple of the cipher's block length.
 | |
|  *   Legal values range from zero to 255, inclusive. This length specifies the
 | |
|  *   length of the padding field exclusive of the padding_length field itself.
 | |
|  *
 | |
|  * The encrypted data length (TLSCiphertext.length) is one more than the sum of
 | |
|  * SecurityParameters.block_length, TLSCompressed.length,
 | |
|  * SecurityParameters.mac_length, and padding_length.
 | |
|  *
 | |
|  * Example: If the block length is 8 bytes, the content length
 | |
|  * (TLSCompressed.length) is 61 bytes, and the MAC length is 20 bytes, then the
 | |
|  * length before padding is 82 bytes (this does not include the IV. Thus, the
 | |
|  * padding length modulo 8 must be equal to 6 in order to make the total length
 | |
|  * an even multiple of 8 bytes (the block length). The padding length can be
 | |
|  * 6, 14, 22, and so on, through 254. If the padding length were the minimum
 | |
|  * necessary, 6, the padding would be 6 bytes, each containing the value 6.
 | |
|  * Thus, the last 8 octets of the GenericBlockCipher before block encryption
 | |
|  * would be xx 06 06 06 06 06 06 06, where xx is the last octet of the MAC.
 | |
|  *
 | |
|  * Note: With block ciphers in CBC mode (Cipher Block Chaining), it is critical
 | |
|  * that the entire plaintext of the record be known before any ciphertext is
 | |
|  * transmitted. Otherwise, it is possible for the attacker to mount the attack
 | |
|  * described in [CBCATT].
 | |
|  *
 | |
|  * Implementation note: Canvel et al. [CBCTIME] have demonstrated a timing
 | |
|  * attack on CBC padding based on the time required to compute the MAC. In
 | |
|  * order to defend against this attack, implementations MUST ensure that
 | |
|  * record processing time is essentially the same whether or not the padding
 | |
|  * is correct. In general, the best way to do this is to compute the MAC even
 | |
|  * if the padding is incorrect, and only then reject the packet. For instance,
 | |
|  * if the pad appears to be incorrect, the implementation might assume a
 | |
|  * zero-length pad and then compute the MAC. This leaves a small timing
 | |
|  * channel, since MAC performance depends, to some extent, on the size of the
 | |
|  * data fragment, but it is not believed to be large enough to be exploitable,
 | |
|  * due to the large block size of existing MACs and the small size of the
 | |
|  * timing signal.
 | |
|  */
 | |
| var forge = require('./forge');
 | |
| require('./asn1');
 | |
| require('./hmac');
 | |
| require('./md5');
 | |
| require('./pem');
 | |
| require('./pki');
 | |
| require('./random');
 | |
| require('./sha1');
 | |
| require('./util');
 | |
| 
 | |
| /**
 | |
|  * Generates pseudo random bytes by mixing the result of two hash functions,
 | |
|  * MD5 and SHA-1.
 | |
|  *
 | |
|  * prf_TLS1(secret, label, seed) =
 | |
|  *   P_MD5(S1, label + seed) XOR P_SHA-1(S2, label + seed);
 | |
|  *
 | |
|  * Each P_hash function functions as follows:
 | |
|  *
 | |
|  * P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
 | |
|  *                        HMAC_hash(secret, A(2) + seed) +
 | |
|  *                        HMAC_hash(secret, A(3) + seed) + ...
 | |
|  * A() is defined as:
 | |
|  *   A(0) = seed
 | |
|  *   A(i) = HMAC_hash(secret, A(i-1))
 | |
|  *
 | |
|  * The '+' operator denotes concatenation.
 | |
|  *
 | |
|  * As many iterations A(N) as are needed are performed to generate enough
 | |
|  * pseudo random byte output. If an iteration creates more data than is
 | |
|  * necessary, then it is truncated.
 | |
|  *
 | |
|  * Therefore:
 | |
|  * A(1) = HMAC_hash(secret, A(0))
 | |
|  *      = HMAC_hash(secret, seed)
 | |
|  * A(2) = HMAC_hash(secret, A(1))
 | |
|  *      = HMAC_hash(secret, HMAC_hash(secret, seed))
 | |
|  *
 | |
|  * Therefore:
 | |
|  * P_hash(secret, seed) =
 | |
|  *   HMAC_hash(secret, HMAC_hash(secret, A(0)) + seed) +
 | |
|  *   HMAC_hash(secret, HMAC_hash(secret, A(1)) + seed) +
 | |
|  *   ...
 | |
|  *
 | |
|  * Therefore:
 | |
|  * P_hash(secret, seed) =
 | |
|  *   HMAC_hash(secret, HMAC_hash(secret, seed) + seed) +
 | |
|  *   HMAC_hash(secret, HMAC_hash(secret, HMAC_hash(secret, seed)) + seed) +
 | |
|  *   ...
 | |
|  *
 | |
|  * @param secret the secret to use.
 | |
|  * @param label the label to use.
 | |
|  * @param seed the seed value to use.
 | |
|  * @param length the number of bytes to generate.
 | |
|  *
 | |
|  * @return the pseudo random bytes in a byte buffer.
 | |
|  */
 | |
| var prf_TLS1 = function(secret, label, seed, length) {
 | |
|   var rval = forge.util.createBuffer();
 | |
| 
 | |
|   /* For TLS 1.0, the secret is split in half, into two secrets of equal
 | |
|     length. If the secret has an odd length then the last byte of the first
 | |
|     half will be the same as the first byte of the second. The length of the
 | |
|     two secrets is half of the secret rounded up. */
 | |
|   var idx = (secret.length >> 1);
 | |
|   var slen = idx + (secret.length & 1);
 | |
|   var s1 = secret.substr(0, slen);
 | |
|   var s2 = secret.substr(idx, slen);
 | |
|   var ai = forge.util.createBuffer();
 | |
|   var hmac = forge.hmac.create();
 | |
|   seed = label + seed;
 | |
| 
 | |
|   // determine the number of iterations that must be performed to generate
 | |
|   // enough output bytes, md5 creates 16 byte hashes, sha1 creates 20
 | |
|   var md5itr = Math.ceil(length / 16);
 | |
|   var sha1itr = Math.ceil(length / 20);
 | |
| 
 | |
|   // do md5 iterations
 | |
|   hmac.start('MD5', s1);
 | |
|   var md5bytes = forge.util.createBuffer();
 | |
|   ai.putBytes(seed);
 | |
|   for(var i = 0; i < md5itr; ++i) {
 | |
|     // HMAC_hash(secret, A(i-1))
 | |
|     hmac.start(null, null);
 | |
|     hmac.update(ai.getBytes());
 | |
|     ai.putBuffer(hmac.digest());
 | |
| 
 | |
|     // HMAC_hash(secret, A(i) + seed)
 | |
|     hmac.start(null, null);
 | |
|     hmac.update(ai.bytes() + seed);
 | |
|     md5bytes.putBuffer(hmac.digest());
 | |
|   }
 | |
| 
 | |
|   // do sha1 iterations
 | |
|   hmac.start('SHA1', s2);
 | |
|   var sha1bytes = forge.util.createBuffer();
 | |
|   ai.clear();
 | |
|   ai.putBytes(seed);
 | |
|   for(var i = 0; i < sha1itr; ++i) {
 | |
|     // HMAC_hash(secret, A(i-1))
 | |
|     hmac.start(null, null);
 | |
|     hmac.update(ai.getBytes());
 | |
|     ai.putBuffer(hmac.digest());
 | |
| 
 | |
|     // HMAC_hash(secret, A(i) + seed)
 | |
|     hmac.start(null, null);
 | |
|     hmac.update(ai.bytes() + seed);
 | |
|     sha1bytes.putBuffer(hmac.digest());
 | |
|   }
 | |
| 
 | |
|   // XOR the md5 bytes with the sha1 bytes
 | |
|   rval.putBytes(forge.util.xorBytes(
 | |
|     md5bytes.getBytes(), sha1bytes.getBytes(), length));
 | |
| 
 | |
|   return rval;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Generates pseudo random bytes using a SHA256 algorithm. For TLS 1.2.
 | |
|  *
 | |
|  * @param secret the secret to use.
 | |
|  * @param label the label to use.
 | |
|  * @param seed the seed value to use.
 | |
|  * @param length the number of bytes to generate.
 | |
|  *
 | |
|  * @return the pseudo random bytes in a byte buffer.
 | |
|  */
 | |
| var prf_sha256 = function(secret, label, seed, length) {
 | |
|    // FIXME: implement me for TLS 1.2
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Gets a MAC for a record using the SHA-1 hash algorithm.
 | |
|  *
 | |
|  * @param key the mac key.
 | |
|  * @param state the sequence number (array of two 32-bit integers).
 | |
|  * @param record the record.
 | |
|  *
 | |
|  * @return the sha-1 hash (20 bytes) for the given record.
 | |
|  */
 | |
| var hmac_sha1 = function(key, seqNum, record) {
 | |
|   /* MAC is computed like so:
 | |
|   HMAC_hash(
 | |
|     key, seqNum +
 | |
|       TLSCompressed.type +
 | |
|       TLSCompressed.version +
 | |
|       TLSCompressed.length +
 | |
|       TLSCompressed.fragment)
 | |
|   */
 | |
|   var hmac = forge.hmac.create();
 | |
|   hmac.start('SHA1', key);
 | |
|   var b = forge.util.createBuffer();
 | |
|   b.putInt32(seqNum[0]);
 | |
|   b.putInt32(seqNum[1]);
 | |
|   b.putByte(record.type);
 | |
|   b.putByte(record.version.major);
 | |
|   b.putByte(record.version.minor);
 | |
|   b.putInt16(record.length);
 | |
|   b.putBytes(record.fragment.bytes());
 | |
|   hmac.update(b.getBytes());
 | |
|   return hmac.digest().getBytes();
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Compresses the TLSPlaintext record into a TLSCompressed record using the
 | |
|  * deflate algorithm.
 | |
|  *
 | |
|  * @param c the TLS connection.
 | |
|  * @param record the TLSPlaintext record to compress.
 | |
|  * @param s the ConnectionState to use.
 | |
|  *
 | |
|  * @return true on success, false on failure.
 | |
|  */
 | |
| var deflate = function(c, record, s) {
 | |
|   var rval = false;
 | |
| 
 | |
|   try {
 | |
|     var bytes = c.deflate(record.fragment.getBytes());
 | |
|     record.fragment = forge.util.createBuffer(bytes);
 | |
|     record.length = bytes.length;
 | |
|     rval = true;
 | |
|   } catch(ex) {
 | |
|     // deflate error, fail out
 | |
|   }
 | |
| 
 | |
|   return rval;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Decompresses the TLSCompressed record into a TLSPlaintext record using the
 | |
|  * deflate algorithm.
 | |
|  *
 | |
|  * @param c the TLS connection.
 | |
|  * @param record the TLSCompressed record to decompress.
 | |
|  * @param s the ConnectionState to use.
 | |
|  *
 | |
|  * @return true on success, false on failure.
 | |
|  */
 | |
| var inflate = function(c, record, s) {
 | |
|   var rval = false;
 | |
| 
 | |
|   try {
 | |
|     var bytes = c.inflate(record.fragment.getBytes());
 | |
|     record.fragment = forge.util.createBuffer(bytes);
 | |
|     record.length = bytes.length;
 | |
|     rval = true;
 | |
|   } catch(ex) {
 | |
|     // inflate error, fail out
 | |
|   }
 | |
| 
 | |
|   return rval;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Reads a TLS variable-length vector from a byte buffer.
 | |
|  *
 | |
|  * Variable-length vectors are defined by specifying a subrange of legal
 | |
|  * lengths, inclusively, using the notation <floor..ceiling>. When these are
 | |
|  * encoded, the actual length precedes the vector's contents in the byte
 | |
|  * stream. The length will be in the form of a number consuming as many bytes
 | |
|  * as required to hold the vector's specified maximum (ceiling) length. A
 | |
|  * variable-length vector with an actual length field of zero is referred to
 | |
|  * as an empty vector.
 | |
|  *
 | |
|  * @param b the byte buffer.
 | |
|  * @param lenBytes the number of bytes required to store the length.
 | |
|  *
 | |
|  * @return the resulting byte buffer.
 | |
|  */
 | |
| var readVector = function(b, lenBytes) {
 | |
|   var len = 0;
 | |
|   switch(lenBytes) {
 | |
|   case 1:
 | |
|     len = b.getByte();
 | |
|     break;
 | |
|   case 2:
 | |
|     len = b.getInt16();
 | |
|     break;
 | |
|   case 3:
 | |
|     len = b.getInt24();
 | |
|     break;
 | |
|   case 4:
 | |
|     len = b.getInt32();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // read vector bytes into a new buffer
 | |
|   return forge.util.createBuffer(b.getBytes(len));
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Writes a TLS variable-length vector to a byte buffer.
 | |
|  *
 | |
|  * @param b the byte buffer.
 | |
|  * @param lenBytes the number of bytes required to store the length.
 | |
|  * @param v the byte buffer vector.
 | |
|  */
 | |
| var writeVector = function(b, lenBytes, v) {
 | |
|   // encode length at the start of the vector, where the number of bytes for
 | |
|   // the length is the maximum number of bytes it would take to encode the
 | |
|   // vector's ceiling
 | |
|   b.putInt(v.length(), lenBytes << 3);
 | |
|   b.putBuffer(v);
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * The tls implementation.
 | |
|  */
 | |
| var tls = {};
 | |
| 
 | |
| /**
 | |
|  * Version: TLS 1.2 = 3.3, TLS 1.1 = 3.2, TLS 1.0 = 3.1. Both TLS 1.1 and
 | |
|  * TLS 1.2 were still too new (ie: openSSL didn't implement them) at the time
 | |
|  * of this implementation so TLS 1.0 was implemented instead.
 | |
|  */
 | |
| tls.Versions = {
 | |
|   TLS_1_0: {major: 3, minor: 1},
 | |
|   TLS_1_1: {major: 3, minor: 2},
 | |
|   TLS_1_2: {major: 3, minor: 3}
 | |
| };
 | |
| tls.SupportedVersions = [
 | |
|   tls.Versions.TLS_1_1,
 | |
|   tls.Versions.TLS_1_0
 | |
| ];
 | |
| tls.Version = tls.SupportedVersions[0];
 | |
| 
 | |
| /**
 | |
|  * Maximum fragment size. True maximum is 16384, but we fragment before that
 | |
|  * to allow for unusual small increases during compression.
 | |
|  */
 | |
| tls.MaxFragment = 16384 - 1024;
 | |
| 
 | |
| /**
 | |
|  * Whether this entity is considered the "client" or "server".
 | |
|  * enum { server, client } ConnectionEnd;
 | |
|  */
 | |
| tls.ConnectionEnd = {
 | |
|   server: 0,
 | |
|   client: 1
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Pseudo-random function algorithm used to generate keys from the master
 | |
|  * secret.
 | |
|  * enum { tls_prf_sha256 } PRFAlgorithm;
 | |
|  */
 | |
| tls.PRFAlgorithm = {
 | |
|   tls_prf_sha256: 0
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Bulk encryption algorithms.
 | |
|  * enum { null, rc4, des3, aes } BulkCipherAlgorithm;
 | |
|  */
 | |
| tls.BulkCipherAlgorithm = {
 | |
|   none: null,
 | |
|   rc4: 0,
 | |
|   des3: 1,
 | |
|   aes: 2
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Cipher types.
 | |
|  * enum { stream, block, aead } CipherType;
 | |
|  */
 | |
| tls.CipherType = {
 | |
|   stream: 0,
 | |
|   block: 1,
 | |
|   aead: 2
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * MAC (Message Authentication Code) algorithms.
 | |
|  * enum { null, hmac_md5, hmac_sha1, hmac_sha256,
 | |
|  *   hmac_sha384, hmac_sha512} MACAlgorithm;
 | |
|  */
 | |
| tls.MACAlgorithm = {
 | |
|   none: null,
 | |
|   hmac_md5: 0,
 | |
|   hmac_sha1: 1,
 | |
|   hmac_sha256: 2,
 | |
|   hmac_sha384: 3,
 | |
|   hmac_sha512: 4
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Compression algorithms.
 | |
|  * enum { null(0), deflate(1), (255) } CompressionMethod;
 | |
|  */
 | |
| tls.CompressionMethod = {
 | |
|   none: 0,
 | |
|   deflate: 1
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * TLS record content types.
 | |
|  * enum {
 | |
|  *   change_cipher_spec(20), alert(21), handshake(22),
 | |
|  *   application_data(23), (255)
 | |
|  * } ContentType;
 | |
|  */
 | |
| tls.ContentType = {
 | |
|   change_cipher_spec: 20,
 | |
|   alert: 21,
 | |
|   handshake: 22,
 | |
|   application_data: 23,
 | |
|   heartbeat: 24
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * TLS handshake types.
 | |
|  * enum {
 | |
|  *   hello_request(0), client_hello(1), server_hello(2),
 | |
|  *   certificate(11), server_key_exchange (12),
 | |
|  *   certificate_request(13), server_hello_done(14),
 | |
|  *   certificate_verify(15), client_key_exchange(16),
 | |
|  *   finished(20), (255)
 | |
|  * } HandshakeType;
 | |
|  */
 | |
| tls.HandshakeType = {
 | |
|   hello_request: 0,
 | |
|   client_hello: 1,
 | |
|   server_hello: 2,
 | |
|   certificate: 11,
 | |
|   server_key_exchange: 12,
 | |
|   certificate_request: 13,
 | |
|   server_hello_done: 14,
 | |
|   certificate_verify: 15,
 | |
|   client_key_exchange: 16,
 | |
|   finished: 20
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * TLS Alert Protocol.
 | |
|  *
 | |
|  * enum { warning(1), fatal(2), (255) } AlertLevel;
 | |
|  *
 | |
|  * enum {
 | |
|  *   close_notify(0),
 | |
|  *   unexpected_message(10),
 | |
|  *   bad_record_mac(20),
 | |
|  *   decryption_failed(21),
 | |
|  *   record_overflow(22),
 | |
|  *   decompression_failure(30),
 | |
|  *   handshake_failure(40),
 | |
|  *   bad_certificate(42),
 | |
|  *   unsupported_certificate(43),
 | |
|  *   certificate_revoked(44),
 | |
|  *   certificate_expired(45),
 | |
|  *   certificate_unknown(46),
 | |
|  *   illegal_parameter(47),
 | |
|  *   unknown_ca(48),
 | |
|  *   access_denied(49),
 | |
|  *   decode_error(50),
 | |
|  *   decrypt_error(51),
 | |
|  *   export_restriction(60),
 | |
|  *   protocol_version(70),
 | |
|  *   insufficient_security(71),
 | |
|  *   internal_error(80),
 | |
|  *   user_canceled(90),
 | |
|  *   no_renegotiation(100),
 | |
|  *   (255)
 | |
|  * } AlertDescription;
 | |
|  *
 | |
|  * struct {
 | |
|  *   AlertLevel level;
 | |
|  *   AlertDescription description;
 | |
|  * } Alert;
 | |
|  */
 | |
| tls.Alert = {};
 | |
| tls.Alert.Level = {
 | |
|   warning: 1,
 | |
|   fatal: 2
 | |
| };
 | |
| tls.Alert.Description = {
 | |
|   close_notify: 0,
 | |
|   unexpected_message: 10,
 | |
|   bad_record_mac: 20,
 | |
|   decryption_failed: 21,
 | |
|   record_overflow: 22,
 | |
|   decompression_failure: 30,
 | |
|   handshake_failure: 40,
 | |
|   bad_certificate: 42,
 | |
|   unsupported_certificate: 43,
 | |
|   certificate_revoked: 44,
 | |
|   certificate_expired: 45,
 | |
|   certificate_unknown: 46,
 | |
|   illegal_parameter: 47,
 | |
|   unknown_ca: 48,
 | |
|   access_denied: 49,
 | |
|   decode_error: 50,
 | |
|   decrypt_error: 51,
 | |
|   export_restriction: 60,
 | |
|   protocol_version: 70,
 | |
|   insufficient_security: 71,
 | |
|   internal_error: 80,
 | |
|   user_canceled: 90,
 | |
|   no_renegotiation: 100
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * TLS Heartbeat Message types.
 | |
|  * enum {
 | |
|  *   heartbeat_request(1),
 | |
|  *   heartbeat_response(2),
 | |
|  *   (255)
 | |
|  * } HeartbeatMessageType;
 | |
|  */
 | |
| tls.HeartbeatMessageType = {
 | |
|   heartbeat_request: 1,
 | |
|   heartbeat_response: 2
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Supported cipher suites.
 | |
|  */
 | |
| tls.CipherSuites = {};
 | |
| 
 | |
| /**
 | |
|  * Gets a supported cipher suite from its 2 byte ID.
 | |
|  *
 | |
|  * @param twoBytes two bytes in a string.
 | |
|  *
 | |
|  * @return the matching supported cipher suite or null.
 | |
|  */
 | |
| tls.getCipherSuite = function(twoBytes) {
 | |
|   var rval = null;
 | |
|   for(var key in tls.CipherSuites) {
 | |
|     var cs = tls.CipherSuites[key];
 | |
|     if(cs.id[0] === twoBytes.charCodeAt(0) &&
 | |
|       cs.id[1] === twoBytes.charCodeAt(1)) {
 | |
|       rval = cs;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return rval;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Called when an unexpected record is encountered.
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  * @param record the record.
 | |
|  */
 | |
| tls.handleUnexpected = function(c, record) {
 | |
|   // if connection is client and closed, ignore unexpected messages
 | |
|   var ignore = (!c.open && c.entity === tls.ConnectionEnd.client);
 | |
|   if(!ignore) {
 | |
|     c.error(c, {
 | |
|       message: 'Unexpected message. Received TLS record out of order.',
 | |
|       send: true,
 | |
|       alert: {
 | |
|         level: tls.Alert.Level.fatal,
 | |
|         description: tls.Alert.Description.unexpected_message
 | |
|       }
 | |
|     });
 | |
|   }
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Called when a client receives a HelloRequest record.
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  * @param record the record.
 | |
|  * @param length the length of the handshake message.
 | |
|  */
 | |
| tls.handleHelloRequest = function(c, record, length) {
 | |
|   // ignore renegotiation requests from the server during a handshake, but
 | |
|   // if handshaking, send a warning alert that renegotation is denied
 | |
|   if(!c.handshaking && c.handshakes > 0) {
 | |
|     // send alert warning
 | |
|     tls.queue(c, tls.createAlert(c, {
 | |
|        level: tls.Alert.Level.warning,
 | |
|        description: tls.Alert.Description.no_renegotiation
 | |
|     }));
 | |
|     tls.flush(c);
 | |
|   }
 | |
| 
 | |
|   // continue
 | |
|   c.process();
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Parses a hello message from a ClientHello or ServerHello record.
 | |
|  *
 | |
|  * @param record the record to parse.
 | |
|  *
 | |
|  * @return the parsed message.
 | |
|  */
 | |
| tls.parseHelloMessage = function(c, record, length) {
 | |
|   var msg = null;
 | |
| 
 | |
|   var client = (c.entity === tls.ConnectionEnd.client);
 | |
| 
 | |
|   // minimum of 38 bytes in message
 | |
|   if(length < 38) {
 | |
|     c.error(c, {
 | |
|       message: client ?
 | |
|         'Invalid ServerHello message. Message too short.' :
 | |
|         'Invalid ClientHello message. Message too short.',
 | |
|       send: true,
 | |
|       alert: {
 | |
|         level: tls.Alert.Level.fatal,
 | |
|         description: tls.Alert.Description.illegal_parameter
 | |
|       }
 | |
|     });
 | |
|   } else {
 | |
|     // use 'remaining' to calculate # of remaining bytes in the message
 | |
|     var b = record.fragment;
 | |
|     var remaining = b.length();
 | |
|     msg = {
 | |
|       version: {
 | |
|         major: b.getByte(),
 | |
|         minor: b.getByte()
 | |
|       },
 | |
|       random: forge.util.createBuffer(b.getBytes(32)),
 | |
|       session_id: readVector(b, 1),
 | |
|       extensions: []
 | |
|     };
 | |
|     if(client) {
 | |
|       msg.cipher_suite = b.getBytes(2);
 | |
|       msg.compression_method = b.getByte();
 | |
|     } else {
 | |
|       msg.cipher_suites = readVector(b, 2);
 | |
|       msg.compression_methods = readVector(b, 1);
 | |
|     }
 | |
| 
 | |
|     // read extensions if there are any bytes left in the message
 | |
|     remaining = length - (remaining - b.length());
 | |
|     if(remaining > 0) {
 | |
|       // parse extensions
 | |
|       var exts = readVector(b, 2);
 | |
|       while(exts.length() > 0) {
 | |
|         msg.extensions.push({
 | |
|           type: [exts.getByte(), exts.getByte()],
 | |
|           data: readVector(exts, 2)
 | |
|         });
 | |
|       }
 | |
| 
 | |
|       // TODO: make extension support modular
 | |
|       if(!client) {
 | |
|         for(var i = 0; i < msg.extensions.length; ++i) {
 | |
|           var ext = msg.extensions[i];
 | |
| 
 | |
|           // support SNI extension
 | |
|           if(ext.type[0] === 0x00 && ext.type[1] === 0x00) {
 | |
|             // get server name list
 | |
|             var snl = readVector(ext.data, 2);
 | |
|             while(snl.length() > 0) {
 | |
|               // read server name type
 | |
|               var snType = snl.getByte();
 | |
| 
 | |
|               // only HostName type (0x00) is known, break out if
 | |
|               // another type is detected
 | |
|               if(snType !== 0x00) {
 | |
|                 break;
 | |
|               }
 | |
| 
 | |
|               // add host name to server name list
 | |
|               c.session.extensions.server_name.serverNameList.push(
 | |
|                 readVector(snl, 2).getBytes());
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // version already set, do not allow version change
 | |
|     if(c.session.version) {
 | |
|       if(msg.version.major !== c.session.version.major ||
 | |
|         msg.version.minor !== c.session.version.minor) {
 | |
|         return c.error(c, {
 | |
|           message: 'TLS version change is disallowed during renegotiation.',
 | |
|           send: true,
 | |
|           alert: {
 | |
|             level: tls.Alert.Level.fatal,
 | |
|             description: tls.Alert.Description.protocol_version
 | |
|           }
 | |
|         });
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // get the chosen (ServerHello) cipher suite
 | |
|     if(client) {
 | |
|       // FIXME: should be checking configured acceptable cipher suites
 | |
|       c.session.cipherSuite = tls.getCipherSuite(msg.cipher_suite);
 | |
|     } else {
 | |
|       // get a supported preferred (ClientHello) cipher suite
 | |
|       // choose the first supported cipher suite
 | |
|       var tmp = forge.util.createBuffer(msg.cipher_suites.bytes());
 | |
|       while(tmp.length() > 0) {
 | |
|         // FIXME: should be checking configured acceptable suites
 | |
|         // cipher suites take up 2 bytes
 | |
|         c.session.cipherSuite = tls.getCipherSuite(tmp.getBytes(2));
 | |
|         if(c.session.cipherSuite !== null) {
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // cipher suite not supported
 | |
|     if(c.session.cipherSuite === null) {
 | |
|       return c.error(c, {
 | |
|         message: 'No cipher suites in common.',
 | |
|         send: true,
 | |
|         alert: {
 | |
|           level: tls.Alert.Level.fatal,
 | |
|           description: tls.Alert.Description.handshake_failure
 | |
|         },
 | |
|         cipherSuite: forge.util.bytesToHex(msg.cipher_suite)
 | |
|       });
 | |
|     }
 | |
| 
 | |
|     // TODO: handle compression methods
 | |
|     if(client) {
 | |
|       c.session.compressionMethod = msg.compression_method;
 | |
|     } else {
 | |
|       // no compression
 | |
|       c.session.compressionMethod = tls.CompressionMethod.none;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return msg;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Creates security parameters for the given connection based on the given
 | |
|  * hello message.
 | |
|  *
 | |
|  * @param c the TLS connection.
 | |
|  * @param msg the hello message.
 | |
|  */
 | |
| tls.createSecurityParameters = function(c, msg) {
 | |
|   /* Note: security params are from TLS 1.2, some values like prf_algorithm
 | |
|   are ignored for TLS 1.0/1.1 and the builtin as specified in the spec is
 | |
|   used. */
 | |
| 
 | |
|   // TODO: handle other options from server when more supported
 | |
| 
 | |
|   // get client and server randoms
 | |
|   var client = (c.entity === tls.ConnectionEnd.client);
 | |
|   var msgRandom = msg.random.bytes();
 | |
|   var cRandom = client ? c.session.sp.client_random : msgRandom;
 | |
|   var sRandom = client ? msgRandom : tls.createRandom().getBytes();
 | |
| 
 | |
|   // create new security parameters
 | |
|   c.session.sp = {
 | |
|     entity: c.entity,
 | |
|     prf_algorithm: tls.PRFAlgorithm.tls_prf_sha256,
 | |
|     bulk_cipher_algorithm: null,
 | |
|     cipher_type: null,
 | |
|     enc_key_length: null,
 | |
|     block_length: null,
 | |
|     fixed_iv_length: null,
 | |
|     record_iv_length: null,
 | |
|     mac_algorithm: null,
 | |
|     mac_length: null,
 | |
|     mac_key_length: null,
 | |
|     compression_algorithm: c.session.compressionMethod,
 | |
|     pre_master_secret: null,
 | |
|     master_secret: null,
 | |
|     client_random: cRandom,
 | |
|     server_random: sRandom
 | |
|   };
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Called when a client receives a ServerHello record.
 | |
|  *
 | |
|  * When a ServerHello message will be sent:
 | |
|  *   The server will send this message in response to a client hello message
 | |
|  *   when it was able to find an acceptable set of algorithms. If it cannot
 | |
|  *   find such a match, it will respond with a handshake failure alert.
 | |
|  *
 | |
|  * uint24 length;
 | |
|  * struct {
 | |
|  *   ProtocolVersion server_version;
 | |
|  *   Random random;
 | |
|  *   SessionID session_id;
 | |
|  *   CipherSuite cipher_suite;
 | |
|  *   CompressionMethod compression_method;
 | |
|  *   select(extensions_present) {
 | |
|  *     case false:
 | |
|  *       struct {};
 | |
|  *     case true:
 | |
|  *       Extension extensions<0..2^16-1>;
 | |
|  *   };
 | |
|  * } ServerHello;
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  * @param record the record.
 | |
|  * @param length the length of the handshake message.
 | |
|  */
 | |
| tls.handleServerHello = function(c, record, length) {
 | |
|   var msg = tls.parseHelloMessage(c, record, length);
 | |
|   if(c.fail) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // ensure server version is compatible
 | |
|   if(msg.version.minor <= c.version.minor) {
 | |
|     c.version.minor = msg.version.minor;
 | |
|   } else {
 | |
|     return c.error(c, {
 | |
|       message: 'Incompatible TLS version.',
 | |
|       send: true,
 | |
|       alert: {
 | |
|         level: tls.Alert.Level.fatal,
 | |
|         description: tls.Alert.Description.protocol_version
 | |
|       }
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   // indicate session version has been set
 | |
|   c.session.version = c.version;
 | |
| 
 | |
|   // get the session ID from the message
 | |
|   var sessionId = msg.session_id.bytes();
 | |
| 
 | |
|   // if the session ID is not blank and matches the cached one, resume
 | |
|   // the session
 | |
|   if(sessionId.length > 0 && sessionId === c.session.id) {
 | |
|     // resuming session, expect a ChangeCipherSpec next
 | |
|     c.expect = SCC;
 | |
|     c.session.resuming = true;
 | |
| 
 | |
|     // get new server random
 | |
|     c.session.sp.server_random = msg.random.bytes();
 | |
|   } else {
 | |
|     // not resuming, expect a server Certificate message next
 | |
|     c.expect = SCE;
 | |
|     c.session.resuming = false;
 | |
| 
 | |
|     // create new security parameters
 | |
|     tls.createSecurityParameters(c, msg);
 | |
|   }
 | |
| 
 | |
|   // set new session ID
 | |
|   c.session.id = sessionId;
 | |
| 
 | |
|   // continue
 | |
|   c.process();
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Called when a server receives a ClientHello record.
 | |
|  *
 | |
|  * When a ClientHello message will be sent:
 | |
|  *   When a client first connects to a server it is required to send the
 | |
|  *   client hello as its first message. The client can also send a client
 | |
|  *   hello in response to a hello request or on its own initiative in order
 | |
|  *   to renegotiate the security parameters in an existing connection.
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  * @param record the record.
 | |
|  * @param length the length of the handshake message.
 | |
|  */
 | |
| tls.handleClientHello = function(c, record, length) {
 | |
|   var msg = tls.parseHelloMessage(c, record, length);
 | |
|   if(c.fail) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // get the session ID from the message
 | |
|   var sessionId = msg.session_id.bytes();
 | |
| 
 | |
|   // see if the given session ID is in the cache
 | |
|   var session = null;
 | |
|   if(c.sessionCache) {
 | |
|     session = c.sessionCache.getSession(sessionId);
 | |
|     if(session === null) {
 | |
|       // session ID not found
 | |
|       sessionId = '';
 | |
|     } else if(session.version.major !== msg.version.major ||
 | |
|       session.version.minor > msg.version.minor) {
 | |
|       // if session version is incompatible with client version, do not resume
 | |
|       session = null;
 | |
|       sessionId = '';
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // no session found to resume, generate a new session ID
 | |
|   if(sessionId.length === 0) {
 | |
|     sessionId = forge.random.getBytes(32);
 | |
|   }
 | |
| 
 | |
|   // update session
 | |
|   c.session.id = sessionId;
 | |
|   c.session.clientHelloVersion = msg.version;
 | |
|   c.session.sp = {};
 | |
|   if(session) {
 | |
|     // use version and security parameters from resumed session
 | |
|     c.version = c.session.version = session.version;
 | |
|     c.session.sp = session.sp;
 | |
|   } else {
 | |
|     // use highest compatible minor version
 | |
|     var version;
 | |
|     for(var i = 1; i < tls.SupportedVersions.length; ++i) {
 | |
|       version = tls.SupportedVersions[i];
 | |
|       if(version.minor <= msg.version.minor) {
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     c.version = {major: version.major, minor: version.minor};
 | |
|     c.session.version = c.version;
 | |
|   }
 | |
| 
 | |
|   // if a session is set, resume it
 | |
|   if(session !== null) {
 | |
|     // resuming session, expect a ChangeCipherSpec next
 | |
|     c.expect = CCC;
 | |
|     c.session.resuming = true;
 | |
| 
 | |
|     // get new client random
 | |
|     c.session.sp.client_random = msg.random.bytes();
 | |
|   } else {
 | |
|     // not resuming, expect a Certificate or ClientKeyExchange
 | |
|     c.expect = (c.verifyClient !== false) ? CCE : CKE;
 | |
|     c.session.resuming = false;
 | |
| 
 | |
|     // create new security parameters
 | |
|     tls.createSecurityParameters(c, msg);
 | |
|   }
 | |
| 
 | |
|   // connection now open
 | |
|   c.open = true;
 | |
| 
 | |
|   // queue server hello
 | |
|   tls.queue(c, tls.createRecord(c, {
 | |
|     type: tls.ContentType.handshake,
 | |
|     data: tls.createServerHello(c)
 | |
|   }));
 | |
| 
 | |
|   if(c.session.resuming) {
 | |
|     // queue change cipher spec message
 | |
|     tls.queue(c, tls.createRecord(c, {
 | |
|       type: tls.ContentType.change_cipher_spec,
 | |
|       data: tls.createChangeCipherSpec()
 | |
|     }));
 | |
| 
 | |
|     // create pending state
 | |
|     c.state.pending = tls.createConnectionState(c);
 | |
| 
 | |
|     // change current write state to pending write state
 | |
|     c.state.current.write = c.state.pending.write;
 | |
| 
 | |
|     // queue finished
 | |
|     tls.queue(c, tls.createRecord(c, {
 | |
|       type: tls.ContentType.handshake,
 | |
|       data: tls.createFinished(c)
 | |
|     }));
 | |
|   } else {
 | |
|     // queue server certificate
 | |
|     tls.queue(c, tls.createRecord(c, {
 | |
|       type: tls.ContentType.handshake,
 | |
|       data: tls.createCertificate(c)
 | |
|     }));
 | |
| 
 | |
|     if(!c.fail) {
 | |
|       // queue server key exchange
 | |
|       tls.queue(c, tls.createRecord(c, {
 | |
|         type: tls.ContentType.handshake,
 | |
|         data: tls.createServerKeyExchange(c)
 | |
|       }));
 | |
| 
 | |
|       // request client certificate if set
 | |
|       if(c.verifyClient !== false) {
 | |
|         // queue certificate request
 | |
|         tls.queue(c, tls.createRecord(c, {
 | |
|           type: tls.ContentType.handshake,
 | |
|           data: tls.createCertificateRequest(c)
 | |
|         }));
 | |
|       }
 | |
| 
 | |
|       // queue server hello done
 | |
|       tls.queue(c, tls.createRecord(c, {
 | |
|         type: tls.ContentType.handshake,
 | |
|         data: tls.createServerHelloDone(c)
 | |
|       }));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // send records
 | |
|   tls.flush(c);
 | |
| 
 | |
|   // continue
 | |
|   c.process();
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Called when a client receives a Certificate record.
 | |
|  *
 | |
|  * When this message will be sent:
 | |
|  *   The server must send a certificate whenever the agreed-upon key exchange
 | |
|  *   method is not an anonymous one. This message will always immediately
 | |
|  *   follow the server hello message.
 | |
|  *
 | |
|  * Meaning of this message:
 | |
|  *   The certificate type must be appropriate for the selected cipher suite's
 | |
|  *   key exchange algorithm, and is generally an X.509v3 certificate. It must
 | |
|  *   contain a key which matches the key exchange method, as follows. Unless
 | |
|  *   otherwise specified, the signing algorithm for the certificate must be
 | |
|  *   the same as the algorithm for the certificate key. Unless otherwise
 | |
|  *   specified, the public key may be of any length.
 | |
|  *
 | |
|  * opaque ASN.1Cert<1..2^24-1>;
 | |
|  * struct {
 | |
|  *   ASN.1Cert certificate_list<1..2^24-1>;
 | |
|  * } Certificate;
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  * @param record the record.
 | |
|  * @param length the length of the handshake message.
 | |
|  */
 | |
| tls.handleCertificate = function(c, record, length) {
 | |
|   // minimum of 3 bytes in message
 | |
|   if(length < 3) {
 | |
|     return c.error(c, {
 | |
|       message: 'Invalid Certificate message. Message too short.',
 | |
|       send: true,
 | |
|       alert: {
 | |
|         level: tls.Alert.Level.fatal,
 | |
|         description: tls.Alert.Description.illegal_parameter
 | |
|       }
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   var b = record.fragment;
 | |
|   var msg = {
 | |
|     certificate_list: readVector(b, 3)
 | |
|   };
 | |
| 
 | |
|   /* The sender's certificate will be first in the list (chain), each
 | |
|     subsequent one that follows will certify the previous one, but root
 | |
|     certificates (self-signed) that specify the certificate authority may
 | |
|     be omitted under the assumption that clients must already possess it. */
 | |
|   var cert, asn1;
 | |
|   var certs = [];
 | |
|   try {
 | |
|     while(msg.certificate_list.length() > 0) {
 | |
|       // each entry in msg.certificate_list is a vector with 3 len bytes
 | |
|       cert = readVector(msg.certificate_list, 3);
 | |
|       asn1 = forge.asn1.fromDer(cert);
 | |
|       cert = forge.pki.certificateFromAsn1(asn1, true);
 | |
|       certs.push(cert);
 | |
|     }
 | |
|   } catch(ex) {
 | |
|     return c.error(c, {
 | |
|       message: 'Could not parse certificate list.',
 | |
|       cause: ex,
 | |
|       send: true,
 | |
|       alert: {
 | |
|         level: tls.Alert.Level.fatal,
 | |
|         description: tls.Alert.Description.bad_certificate
 | |
|       }
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   // ensure at least 1 certificate was provided if in client-mode
 | |
|   // or if verifyClient was set to true to require a certificate
 | |
|   // (as opposed to 'optional')
 | |
|   var client = (c.entity === tls.ConnectionEnd.client);
 | |
|   if((client || c.verifyClient === true) && certs.length === 0) {
 | |
|     // error, no certificate
 | |
|     c.error(c, {
 | |
|       message: client ?
 | |
|         'No server certificate provided.' :
 | |
|         'No client certificate provided.',
 | |
|       send: true,
 | |
|       alert: {
 | |
|         level: tls.Alert.Level.fatal,
 | |
|         description: tls.Alert.Description.illegal_parameter
 | |
|       }
 | |
|     });
 | |
|   } else if(certs.length === 0) {
 | |
|     // no certs to verify
 | |
|     // expect a ServerKeyExchange or ClientKeyExchange message next
 | |
|     c.expect = client ? SKE : CKE;
 | |
|   } else {
 | |
|     // save certificate in session
 | |
|     if(client) {
 | |
|       c.session.serverCertificate = certs[0];
 | |
|     } else {
 | |
|       c.session.clientCertificate = certs[0];
 | |
|     }
 | |
| 
 | |
|     if(tls.verifyCertificateChain(c, certs)) {
 | |
|       // expect a ServerKeyExchange or ClientKeyExchange message next
 | |
|       c.expect = client ? SKE : CKE;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // continue
 | |
|   c.process();
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Called when a client receives a ServerKeyExchange record.
 | |
|  *
 | |
|  * When this message will be sent:
 | |
|  *   This message will be sent immediately after the server certificate
 | |
|  *   message (or the server hello message, if this is an anonymous
 | |
|  *   negotiation).
 | |
|  *
 | |
|  *   The server key exchange message is sent by the server only when the
 | |
|  *   server certificate message (if sent) does not contain enough data to
 | |
|  *   allow the client to exchange a premaster secret.
 | |
|  *
 | |
|  * Meaning of this message:
 | |
|  *   This message conveys cryptographic information to allow the client to
 | |
|  *   communicate the premaster secret: either an RSA public key to encrypt
 | |
|  *   the premaster secret with, or a Diffie-Hellman public key with which the
 | |
|  *   client can complete a key exchange (with the result being the premaster
 | |
|  *   secret.)
 | |
|  *
 | |
|  * enum {
 | |
|  *   dhe_dss, dhe_rsa, dh_anon, rsa, dh_dss, dh_rsa
 | |
|  * } KeyExchangeAlgorithm;
 | |
|  *
 | |
|  * struct {
 | |
|  *   opaque dh_p<1..2^16-1>;
 | |
|  *   opaque dh_g<1..2^16-1>;
 | |
|  *   opaque dh_Ys<1..2^16-1>;
 | |
|  * } ServerDHParams;
 | |
|  *
 | |
|  * struct {
 | |
|  *   select(KeyExchangeAlgorithm) {
 | |
|  *     case dh_anon:
 | |
|  *       ServerDHParams params;
 | |
|  *     case dhe_dss:
 | |
|  *     case dhe_rsa:
 | |
|  *       ServerDHParams params;
 | |
|  *       digitally-signed struct {
 | |
|  *         opaque client_random[32];
 | |
|  *         opaque server_random[32];
 | |
|  *         ServerDHParams params;
 | |
|  *       } signed_params;
 | |
|  *     case rsa:
 | |
|  *     case dh_dss:
 | |
|  *     case dh_rsa:
 | |
|  *       struct {};
 | |
|  *   };
 | |
|  * } ServerKeyExchange;
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  * @param record the record.
 | |
|  * @param length the length of the handshake message.
 | |
|  */
 | |
| tls.handleServerKeyExchange = function(c, record, length) {
 | |
|   // this implementation only supports RSA, no Diffie-Hellman support
 | |
|   // so any length > 0 is invalid
 | |
|   if(length > 0) {
 | |
|     return c.error(c, {
 | |
|       message: 'Invalid key parameters. Only RSA is supported.',
 | |
|       send: true,
 | |
|       alert: {
 | |
|         level: tls.Alert.Level.fatal,
 | |
|         description: tls.Alert.Description.unsupported_certificate
 | |
|       }
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   // expect an optional CertificateRequest message next
 | |
|   c.expect = SCR;
 | |
| 
 | |
|   // continue
 | |
|   c.process();
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Called when a client receives a ClientKeyExchange record.
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  * @param record the record.
 | |
|  * @param length the length of the handshake message.
 | |
|  */
 | |
| tls.handleClientKeyExchange = function(c, record, length) {
 | |
|   // this implementation only supports RSA, no Diffie-Hellman support
 | |
|   // so any length < 48 is invalid
 | |
|   if(length < 48) {
 | |
|     return c.error(c, {
 | |
|       message: 'Invalid key parameters. Only RSA is supported.',
 | |
|       send: true,
 | |
|       alert: {
 | |
|         level: tls.Alert.Level.fatal,
 | |
|         description: tls.Alert.Description.unsupported_certificate
 | |
|       }
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   var b = record.fragment;
 | |
|   var msg = {
 | |
|     enc_pre_master_secret: readVector(b, 2).getBytes()
 | |
|   };
 | |
| 
 | |
|   // do rsa decryption
 | |
|   var privateKey = null;
 | |
|   if(c.getPrivateKey) {
 | |
|     try {
 | |
|       privateKey = c.getPrivateKey(c, c.session.serverCertificate);
 | |
|       privateKey = forge.pki.privateKeyFromPem(privateKey);
 | |
|     } catch(ex) {
 | |
|       c.error(c, {
 | |
|         message: 'Could not get private key.',
 | |
|         cause: ex,
 | |
|         send: true,
 | |
|         alert: {
 | |
|           level: tls.Alert.Level.fatal,
 | |
|           description: tls.Alert.Description.internal_error
 | |
|         }
 | |
|       });
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if(privateKey === null) {
 | |
|     return c.error(c, {
 | |
|       message: 'No private key set.',
 | |
|       send: true,
 | |
|       alert: {
 | |
|         level: tls.Alert.Level.fatal,
 | |
|         description: tls.Alert.Description.internal_error
 | |
|       }
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   try {
 | |
|     // decrypt 48-byte pre-master secret
 | |
|     var sp = c.session.sp;
 | |
|     sp.pre_master_secret = privateKey.decrypt(msg.enc_pre_master_secret);
 | |
| 
 | |
|     // ensure client hello version matches first 2 bytes
 | |
|     var version = c.session.clientHelloVersion;
 | |
|     if(version.major !== sp.pre_master_secret.charCodeAt(0) ||
 | |
|       version.minor !== sp.pre_master_secret.charCodeAt(1)) {
 | |
|       // error, do not send alert (see BLEI attack below)
 | |
|       throw new Error('TLS version rollback attack detected.');
 | |
|     }
 | |
|   } catch(ex) {
 | |
|     /* Note: Daniel Bleichenbacher [BLEI] can be used to attack a
 | |
|       TLS server which is using PKCS#1 encoded RSA, so instead of
 | |
|       failing here, we generate 48 random bytes and use that as
 | |
|       the pre-master secret. */
 | |
|     sp.pre_master_secret = forge.random.getBytes(48);
 | |
|   }
 | |
| 
 | |
|   // expect a CertificateVerify message if a Certificate was received that
 | |
|   // does not have fixed Diffie-Hellman params, otherwise expect
 | |
|   // ChangeCipherSpec
 | |
|   c.expect = CCC;
 | |
|   if(c.session.clientCertificate !== null) {
 | |
|     // only RSA support, so expect CertificateVerify
 | |
|     // TODO: support Diffie-Hellman
 | |
|     c.expect = CCV;
 | |
|   }
 | |
| 
 | |
|   // continue
 | |
|   c.process();
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Called when a client receives a CertificateRequest record.
 | |
|  *
 | |
|  * When this message will be sent:
 | |
|  *   A non-anonymous server can optionally request a certificate from the
 | |
|  *   client, if appropriate for the selected cipher suite. This message, if
 | |
|  *   sent, will immediately follow the Server Key Exchange message (if it is
 | |
|  *   sent; otherwise, the Server Certificate message).
 | |
|  *
 | |
|  * enum {
 | |
|  *   rsa_sign(1), dss_sign(2), rsa_fixed_dh(3), dss_fixed_dh(4),
 | |
|  *   rsa_ephemeral_dh_RESERVED(5), dss_ephemeral_dh_RESERVED(6),
 | |
|  *   fortezza_dms_RESERVED(20), (255)
 | |
|  * } ClientCertificateType;
 | |
|  *
 | |
|  * opaque DistinguishedName<1..2^16-1>;
 | |
|  *
 | |
|  * struct {
 | |
|  *   ClientCertificateType certificate_types<1..2^8-1>;
 | |
|  *   SignatureAndHashAlgorithm supported_signature_algorithms<2^16-1>;
 | |
|  *   DistinguishedName certificate_authorities<0..2^16-1>;
 | |
|  * } CertificateRequest;
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  * @param record the record.
 | |
|  * @param length the length of the handshake message.
 | |
|  */
 | |
| tls.handleCertificateRequest = function(c, record, length) {
 | |
|   // minimum of 3 bytes in message
 | |
|   if(length < 3) {
 | |
|     return c.error(c, {
 | |
|       message: 'Invalid CertificateRequest. Message too short.',
 | |
|       send: true,
 | |
|       alert: {
 | |
|         level: tls.Alert.Level.fatal,
 | |
|         description: tls.Alert.Description.illegal_parameter
 | |
|       }
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   // TODO: TLS 1.2+ has different format including
 | |
|   // SignatureAndHashAlgorithm after cert types
 | |
|   var b = record.fragment;
 | |
|   var msg = {
 | |
|     certificate_types: readVector(b, 1),
 | |
|     certificate_authorities: readVector(b, 2)
 | |
|   };
 | |
| 
 | |
|   // save certificate request in session
 | |
|   c.session.certificateRequest = msg;
 | |
| 
 | |
|   // expect a ServerHelloDone message next
 | |
|   c.expect = SHD;
 | |
| 
 | |
|   // continue
 | |
|   c.process();
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Called when a server receives a CertificateVerify record.
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  * @param record the record.
 | |
|  * @param length the length of the handshake message.
 | |
|  */
 | |
| tls.handleCertificateVerify = function(c, record, length) {
 | |
|   if(length < 2) {
 | |
|     return c.error(c, {
 | |
|       message: 'Invalid CertificateVerify. Message too short.',
 | |
|       send: true,
 | |
|       alert: {
 | |
|         level: tls.Alert.Level.fatal,
 | |
|         description: tls.Alert.Description.illegal_parameter
 | |
|       }
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   // rewind to get full bytes for message so it can be manually
 | |
|   // digested below (special case for CertificateVerify messages because
 | |
|   // they must be digested *after* handling as opposed to all others)
 | |
|   var b = record.fragment;
 | |
|   b.read -= 4;
 | |
|   var msgBytes = b.bytes();
 | |
|   b.read += 4;
 | |
| 
 | |
|   var msg = {
 | |
|     signature: readVector(b, 2).getBytes()
 | |
|   };
 | |
| 
 | |
|   // TODO: add support for DSA
 | |
| 
 | |
|   // generate data to verify
 | |
|   var verify = forge.util.createBuffer();
 | |
|   verify.putBuffer(c.session.md5.digest());
 | |
|   verify.putBuffer(c.session.sha1.digest());
 | |
|   verify = verify.getBytes();
 | |
| 
 | |
|   try {
 | |
|     var cert = c.session.clientCertificate;
 | |
|     /*b = forge.pki.rsa.decrypt(
 | |
|       msg.signature, cert.publicKey, true, verify.length);
 | |
|     if(b !== verify) {*/
 | |
|     if(!cert.publicKey.verify(verify, msg.signature, 'NONE')) {
 | |
|       throw new Error('CertificateVerify signature does not match.');
 | |
|     }
 | |
| 
 | |
|     // digest message now that it has been handled
 | |
|     c.session.md5.update(msgBytes);
 | |
|     c.session.sha1.update(msgBytes);
 | |
|   } catch(ex) {
 | |
|     return c.error(c, {
 | |
|       message: 'Bad signature in CertificateVerify.',
 | |
|       send: true,
 | |
|       alert: {
 | |
|         level: tls.Alert.Level.fatal,
 | |
|         description: tls.Alert.Description.handshake_failure
 | |
|       }
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   // expect ChangeCipherSpec
 | |
|   c.expect = CCC;
 | |
| 
 | |
|   // continue
 | |
|   c.process();
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Called when a client receives a ServerHelloDone record.
 | |
|  *
 | |
|  * When this message will be sent:
 | |
|  *   The server hello done message is sent by the server to indicate the end
 | |
|  *   of the server hello and associated messages. After sending this message
 | |
|  *   the server will wait for a client response.
 | |
|  *
 | |
|  * Meaning of this message:
 | |
|  *   This message means that the server is done sending messages to support
 | |
|  *   the key exchange, and the client can proceed with its phase of the key
 | |
|  *   exchange.
 | |
|  *
 | |
|  *   Upon receipt of the server hello done message the client should verify
 | |
|  *   that the server provided a valid certificate if required and check that
 | |
|  *   the server hello parameters are acceptable.
 | |
|  *
 | |
|  * struct {} ServerHelloDone;
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  * @param record the record.
 | |
|  * @param length the length of the handshake message.
 | |
|  */
 | |
| tls.handleServerHelloDone = function(c, record, length) {
 | |
|   // len must be 0 bytes
 | |
|   if(length > 0) {
 | |
|     return c.error(c, {
 | |
|       message: 'Invalid ServerHelloDone message. Invalid length.',
 | |
|       send: true,
 | |
|       alert: {
 | |
|         level: tls.Alert.Level.fatal,
 | |
|         description: tls.Alert.Description.record_overflow
 | |
|       }
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   if(c.serverCertificate === null) {
 | |
|     // no server certificate was provided
 | |
|     var error = {
 | |
|       message: 'No server certificate provided. Not enough security.',
 | |
|       send: true,
 | |
|       alert: {
 | |
|         level: tls.Alert.Level.fatal,
 | |
|         description: tls.Alert.Description.insufficient_security
 | |
|       }
 | |
|     };
 | |
| 
 | |
|     // call application callback
 | |
|     var depth = 0;
 | |
|     var ret = c.verify(c, error.alert.description, depth, []);
 | |
|     if(ret !== true) {
 | |
|       // check for custom alert info
 | |
|       if(ret || ret === 0) {
 | |
|         // set custom message and alert description
 | |
|         if(typeof ret === 'object' && !forge.util.isArray(ret)) {
 | |
|           if(ret.message) {
 | |
|             error.message = ret.message;
 | |
|           }
 | |
|           if(ret.alert) {
 | |
|             error.alert.description = ret.alert;
 | |
|           }
 | |
|         } else if(typeof ret === 'number') {
 | |
|           // set custom alert description
 | |
|           error.alert.description = ret;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // send error
 | |
|       return c.error(c, error);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // create client certificate message if requested
 | |
|   if(c.session.certificateRequest !== null) {
 | |
|     record = tls.createRecord(c, {
 | |
|       type: tls.ContentType.handshake,
 | |
|       data: tls.createCertificate(c)
 | |
|     });
 | |
|     tls.queue(c, record);
 | |
|   }
 | |
| 
 | |
|   // create client key exchange message
 | |
|   record = tls.createRecord(c, {
 | |
|      type: tls.ContentType.handshake,
 | |
|      data: tls.createClientKeyExchange(c)
 | |
|   });
 | |
|   tls.queue(c, record);
 | |
| 
 | |
|   // expect no messages until the following callback has been called
 | |
|   c.expect = SER;
 | |
| 
 | |
|   // create callback to handle client signature (for client-certs)
 | |
|   var callback = function(c, signature) {
 | |
|     if(c.session.certificateRequest !== null &&
 | |
|       c.session.clientCertificate !== null) {
 | |
|       // create certificate verify message
 | |
|       tls.queue(c, tls.createRecord(c, {
 | |
|         type: tls.ContentType.handshake,
 | |
|         data: tls.createCertificateVerify(c, signature)
 | |
|       }));
 | |
|     }
 | |
| 
 | |
|     // create change cipher spec message
 | |
|     tls.queue(c, tls.createRecord(c, {
 | |
|       type: tls.ContentType.change_cipher_spec,
 | |
|       data: tls.createChangeCipherSpec()
 | |
|     }));
 | |
| 
 | |
|     // create pending state
 | |
|     c.state.pending = tls.createConnectionState(c);
 | |
| 
 | |
|     // change current write state to pending write state
 | |
|     c.state.current.write = c.state.pending.write;
 | |
| 
 | |
|     // create finished message
 | |
|     tls.queue(c, tls.createRecord(c, {
 | |
|       type: tls.ContentType.handshake,
 | |
|       data: tls.createFinished(c)
 | |
|     }));
 | |
| 
 | |
|     // expect a server ChangeCipherSpec message next
 | |
|     c.expect = SCC;
 | |
| 
 | |
|     // send records
 | |
|     tls.flush(c);
 | |
| 
 | |
|     // continue
 | |
|     c.process();
 | |
|   };
 | |
| 
 | |
|   // if there is no certificate request or no client certificate, do
 | |
|   // callback immediately
 | |
|   if(c.session.certificateRequest === null ||
 | |
|     c.session.clientCertificate === null) {
 | |
|     return callback(c, null);
 | |
|   }
 | |
| 
 | |
|   // otherwise get the client signature
 | |
|   tls.getClientSignature(c, callback);
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Called when a ChangeCipherSpec record is received.
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  * @param record the record.
 | |
|  */
 | |
| tls.handleChangeCipherSpec = function(c, record) {
 | |
|   if(record.fragment.getByte() !== 0x01) {
 | |
|     return c.error(c, {
 | |
|       message: 'Invalid ChangeCipherSpec message received.',
 | |
|       send: true,
 | |
|       alert: {
 | |
|         level: tls.Alert.Level.fatal,
 | |
|         description: tls.Alert.Description.illegal_parameter
 | |
|       }
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   // create pending state if:
 | |
|   // 1. Resuming session in client mode OR
 | |
|   // 2. NOT resuming session in server mode
 | |
|   var client = (c.entity === tls.ConnectionEnd.client);
 | |
|   if((c.session.resuming && client) || (!c.session.resuming && !client)) {
 | |
|     c.state.pending = tls.createConnectionState(c);
 | |
|   }
 | |
| 
 | |
|   // change current read state to pending read state
 | |
|   c.state.current.read = c.state.pending.read;
 | |
| 
 | |
|   // clear pending state if:
 | |
|   // 1. NOT resuming session in client mode OR
 | |
|   // 2. resuming a session in server mode
 | |
|   if((!c.session.resuming && client) || (c.session.resuming && !client)) {
 | |
|     c.state.pending = null;
 | |
|   }
 | |
| 
 | |
|   // expect a Finished record next
 | |
|   c.expect = client ? SFI : CFI;
 | |
| 
 | |
|   // continue
 | |
|   c.process();
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Called when a Finished record is received.
 | |
|  *
 | |
|  * When this message will be sent:
 | |
|  *   A finished message is always sent immediately after a change
 | |
|  *   cipher spec message to verify that the key exchange and
 | |
|  *   authentication processes were successful. It is essential that a
 | |
|  *   change cipher spec message be received between the other
 | |
|  *   handshake messages and the Finished message.
 | |
|  *
 | |
|  * Meaning of this message:
 | |
|  *   The finished message is the first protected with the just-
 | |
|  *   negotiated algorithms, keys, and secrets. Recipients of finished
 | |
|  *   messages must verify that the contents are correct.  Once a side
 | |
|  *   has sent its Finished message and received and validated the
 | |
|  *   Finished message from its peer, it may begin to send and receive
 | |
|  *   application data over the connection.
 | |
|  *
 | |
|  * struct {
 | |
|  *   opaque verify_data[verify_data_length];
 | |
|  * } Finished;
 | |
|  *
 | |
|  * verify_data
 | |
|  *   PRF(master_secret, finished_label, Hash(handshake_messages))
 | |
|  *     [0..verify_data_length-1];
 | |
|  *
 | |
|  * finished_label
 | |
|  *   For Finished messages sent by the client, the string
 | |
|  *   "client finished". For Finished messages sent by the server, the
 | |
|  *   string "server finished".
 | |
|  *
 | |
|  * verify_data_length depends on the cipher suite. If it is not specified
 | |
|  * by the cipher suite, then it is 12. Versions of TLS < 1.2 always used
 | |
|  * 12 bytes.
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  * @param record the record.
 | |
|  * @param length the length of the handshake message.
 | |
|  */
 | |
| tls.handleFinished = function(c, record, length) {
 | |
|   // rewind to get full bytes for message so it can be manually
 | |
|   // digested below (special case for Finished messages because they
 | |
|   // must be digested *after* handling as opposed to all others)
 | |
|   var b = record.fragment;
 | |
|   b.read -= 4;
 | |
|   var msgBytes = b.bytes();
 | |
|   b.read += 4;
 | |
| 
 | |
|   // message contains only verify_data
 | |
|   var vd = record.fragment.getBytes();
 | |
| 
 | |
|   // ensure verify data is correct
 | |
|   b = forge.util.createBuffer();
 | |
|   b.putBuffer(c.session.md5.digest());
 | |
|   b.putBuffer(c.session.sha1.digest());
 | |
| 
 | |
|   // set label based on entity type
 | |
|   var client = (c.entity === tls.ConnectionEnd.client);
 | |
|   var label = client ? 'server finished' : 'client finished';
 | |
| 
 | |
|   // TODO: determine prf function and verify length for TLS 1.2
 | |
|   var sp = c.session.sp;
 | |
|   var vdl = 12;
 | |
|   var prf = prf_TLS1;
 | |
|   b = prf(sp.master_secret, label, b.getBytes(), vdl);
 | |
|   if(b.getBytes() !== vd) {
 | |
|     return c.error(c, {
 | |
|       message: 'Invalid verify_data in Finished message.',
 | |
|       send: true,
 | |
|       alert: {
 | |
|         level: tls.Alert.Level.fatal,
 | |
|         description: tls.Alert.Description.decrypt_error
 | |
|       }
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   // digest finished message now that it has been handled
 | |
|   c.session.md5.update(msgBytes);
 | |
|   c.session.sha1.update(msgBytes);
 | |
| 
 | |
|   // resuming session as client or NOT resuming session as server
 | |
|   if((c.session.resuming && client) || (!c.session.resuming && !client)) {
 | |
|     // create change cipher spec message
 | |
|     tls.queue(c, tls.createRecord(c, {
 | |
|       type: tls.ContentType.change_cipher_spec,
 | |
|       data: tls.createChangeCipherSpec()
 | |
|     }));
 | |
| 
 | |
|     // change current write state to pending write state, clear pending
 | |
|     c.state.current.write = c.state.pending.write;
 | |
|     c.state.pending = null;
 | |
| 
 | |
|     // create finished message
 | |
|     tls.queue(c, tls.createRecord(c, {
 | |
|       type: tls.ContentType.handshake,
 | |
|       data: tls.createFinished(c)
 | |
|     }));
 | |
|   }
 | |
| 
 | |
|   // expect application data next
 | |
|   c.expect = client ? SAD : CAD;
 | |
| 
 | |
|   // handshake complete
 | |
|   c.handshaking = false;
 | |
|   ++c.handshakes;
 | |
| 
 | |
|   // save access to peer certificate
 | |
|   c.peerCertificate = client ?
 | |
|     c.session.serverCertificate : c.session.clientCertificate;
 | |
| 
 | |
|   // send records
 | |
|   tls.flush(c);
 | |
| 
 | |
|   // now connected
 | |
|   c.isConnected = true;
 | |
|   c.connected(c);
 | |
| 
 | |
|   // continue
 | |
|   c.process();
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Called when an Alert record is received.
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  * @param record the record.
 | |
|  */
 | |
| tls.handleAlert = function(c, record) {
 | |
|   // read alert
 | |
|   var b = record.fragment;
 | |
|   var alert = {
 | |
|     level: b.getByte(),
 | |
|     description: b.getByte()
 | |
|   };
 | |
| 
 | |
|   // TODO: consider using a table?
 | |
|   // get appropriate message
 | |
|   var msg;
 | |
|   switch(alert.description) {
 | |
|   case tls.Alert.Description.close_notify:
 | |
|     msg = 'Connection closed.';
 | |
|     break;
 | |
|   case tls.Alert.Description.unexpected_message:
 | |
|     msg = 'Unexpected message.';
 | |
|     break;
 | |
|   case tls.Alert.Description.bad_record_mac:
 | |
|     msg = 'Bad record MAC.';
 | |
|     break;
 | |
|   case tls.Alert.Description.decryption_failed:
 | |
|     msg = 'Decryption failed.';
 | |
|     break;
 | |
|   case tls.Alert.Description.record_overflow:
 | |
|     msg = 'Record overflow.';
 | |
|     break;
 | |
|   case tls.Alert.Description.decompression_failure:
 | |
|     msg = 'Decompression failed.';
 | |
|     break;
 | |
|   case tls.Alert.Description.handshake_failure:
 | |
|     msg = 'Handshake failure.';
 | |
|     break;
 | |
|   case tls.Alert.Description.bad_certificate:
 | |
|     msg = 'Bad certificate.';
 | |
|     break;
 | |
|   case tls.Alert.Description.unsupported_certificate:
 | |
|     msg = 'Unsupported certificate.';
 | |
|     break;
 | |
|   case tls.Alert.Description.certificate_revoked:
 | |
|     msg = 'Certificate revoked.';
 | |
|     break;
 | |
|   case tls.Alert.Description.certificate_expired:
 | |
|     msg = 'Certificate expired.';
 | |
|     break;
 | |
|   case tls.Alert.Description.certificate_unknown:
 | |
|     msg = 'Certificate unknown.';
 | |
|     break;
 | |
|   case tls.Alert.Description.illegal_parameter:
 | |
|     msg = 'Illegal parameter.';
 | |
|     break;
 | |
|   case tls.Alert.Description.unknown_ca:
 | |
|     msg = 'Unknown certificate authority.';
 | |
|     break;
 | |
|   case tls.Alert.Description.access_denied:
 | |
|     msg = 'Access denied.';
 | |
|     break;
 | |
|   case tls.Alert.Description.decode_error:
 | |
|     msg = 'Decode error.';
 | |
|     break;
 | |
|   case tls.Alert.Description.decrypt_error:
 | |
|     msg = 'Decrypt error.';
 | |
|     break;
 | |
|   case tls.Alert.Description.export_restriction:
 | |
|     msg = 'Export restriction.';
 | |
|     break;
 | |
|   case tls.Alert.Description.protocol_version:
 | |
|     msg = 'Unsupported protocol version.';
 | |
|     break;
 | |
|   case tls.Alert.Description.insufficient_security:
 | |
|     msg = 'Insufficient security.';
 | |
|     break;
 | |
|   case tls.Alert.Description.internal_error:
 | |
|     msg = 'Internal error.';
 | |
|     break;
 | |
|   case tls.Alert.Description.user_canceled:
 | |
|     msg = 'User canceled.';
 | |
|     break;
 | |
|   case tls.Alert.Description.no_renegotiation:
 | |
|     msg = 'Renegotiation not supported.';
 | |
|     break;
 | |
|   default:
 | |
|     msg = 'Unknown error.';
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // close connection on close_notify, not an error
 | |
|   if(alert.description === tls.Alert.Description.close_notify) {
 | |
|     return c.close();
 | |
|   }
 | |
| 
 | |
|   // call error handler
 | |
|   c.error(c, {
 | |
|     message: msg,
 | |
|     send: false,
 | |
|     // origin is the opposite end
 | |
|     origin: (c.entity === tls.ConnectionEnd.client) ? 'server' : 'client',
 | |
|     alert: alert
 | |
|   });
 | |
| 
 | |
|   // continue
 | |
|   c.process();
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Called when a Handshake record is received.
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  * @param record the record.
 | |
|  */
 | |
| tls.handleHandshake = function(c, record) {
 | |
|   // get the handshake type and message length
 | |
|   var b = record.fragment;
 | |
|   var type = b.getByte();
 | |
|   var length = b.getInt24();
 | |
| 
 | |
|   // see if the record fragment doesn't yet contain the full message
 | |
|   if(length > b.length()) {
 | |
|     // cache the record, clear its fragment, and reset the buffer read
 | |
|     // pointer before the type and length were read
 | |
|     c.fragmented = record;
 | |
|     record.fragment = forge.util.createBuffer();
 | |
|     b.read -= 4;
 | |
| 
 | |
|     // continue
 | |
|     return c.process();
 | |
|   }
 | |
| 
 | |
|   // full message now available, clear cache, reset read pointer to
 | |
|   // before type and length
 | |
|   c.fragmented = null;
 | |
|   b.read -= 4;
 | |
| 
 | |
|   // save the handshake bytes for digestion after handler is found
 | |
|   // (include type and length of handshake msg)
 | |
|   var bytes = b.bytes(length + 4);
 | |
| 
 | |
|   // restore read pointer
 | |
|   b.read += 4;
 | |
| 
 | |
|   // handle expected message
 | |
|   if(type in hsTable[c.entity][c.expect]) {
 | |
|     // initialize server session
 | |
|     if(c.entity === tls.ConnectionEnd.server && !c.open && !c.fail) {
 | |
|       c.handshaking = true;
 | |
|       c.session = {
 | |
|         version: null,
 | |
|         extensions: {
 | |
|           server_name: {
 | |
|             serverNameList: []
 | |
|           }
 | |
|         },
 | |
|         cipherSuite: null,
 | |
|         compressionMethod: null,
 | |
|         serverCertificate: null,
 | |
|         clientCertificate: null,
 | |
|         md5: forge.md.md5.create(),
 | |
|         sha1: forge.md.sha1.create()
 | |
|       };
 | |
|     }
 | |
| 
 | |
|     /* Update handshake messages digest. Finished and CertificateVerify
 | |
|       messages are not digested here. They can't be digested as part of
 | |
|       the verify_data that they contain. These messages are manually
 | |
|       digested in their handlers. HelloRequest messages are simply never
 | |
|       included in the handshake message digest according to spec. */
 | |
|     if(type !== tls.HandshakeType.hello_request &&
 | |
|       type !== tls.HandshakeType.certificate_verify &&
 | |
|       type !== tls.HandshakeType.finished) {
 | |
|       c.session.md5.update(bytes);
 | |
|       c.session.sha1.update(bytes);
 | |
|     }
 | |
| 
 | |
|     // handle specific handshake type record
 | |
|     hsTable[c.entity][c.expect][type](c, record, length);
 | |
|   } else {
 | |
|     // unexpected record
 | |
|     tls.handleUnexpected(c, record);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Called when an ApplicationData record is received.
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  * @param record the record.
 | |
|  */
 | |
| tls.handleApplicationData = function(c, record) {
 | |
|   // buffer data, notify that its ready
 | |
|   c.data.putBuffer(record.fragment);
 | |
|   c.dataReady(c);
 | |
| 
 | |
|   // continue
 | |
|   c.process();
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Called when a Heartbeat record is received.
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  * @param record the record.
 | |
|  */
 | |
| tls.handleHeartbeat = function(c, record) {
 | |
|   // get the heartbeat type and payload
 | |
|   var b = record.fragment;
 | |
|   var type = b.getByte();
 | |
|   var length = b.getInt16();
 | |
|   var payload = b.getBytes(length);
 | |
| 
 | |
|   if(type === tls.HeartbeatMessageType.heartbeat_request) {
 | |
|     // discard request during handshake or if length is too large
 | |
|     if(c.handshaking || length > payload.length) {
 | |
|       // continue
 | |
|       return c.process();
 | |
|     }
 | |
|     // retransmit payload
 | |
|     tls.queue(c, tls.createRecord(c, {
 | |
|       type: tls.ContentType.heartbeat,
 | |
|       data: tls.createHeartbeat(
 | |
|         tls.HeartbeatMessageType.heartbeat_response, payload)
 | |
|     }));
 | |
|     tls.flush(c);
 | |
|   } else if(type === tls.HeartbeatMessageType.heartbeat_response) {
 | |
|     // check payload against expected payload, discard heartbeat if no match
 | |
|     if(payload !== c.expectedHeartbeatPayload) {
 | |
|       // continue
 | |
|       return c.process();
 | |
|     }
 | |
| 
 | |
|     // notify that a valid heartbeat was received
 | |
|     if(c.heartbeatReceived) {
 | |
|       c.heartbeatReceived(c, forge.util.createBuffer(payload));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // continue
 | |
|   c.process();
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * The transistional state tables for receiving TLS records. It maps the
 | |
|  * current TLS engine state and a received record to a function to handle the
 | |
|  * record and update the state.
 | |
|  *
 | |
|  * For instance, if the current state is SHE, then the TLS engine is expecting
 | |
|  * a ServerHello record. Once a record is received, the handler function is
 | |
|  * looked up using the state SHE and the record's content type.
 | |
|  *
 | |
|  * The resulting function will either be an error handler or a record handler.
 | |
|  * The function will take whatever action is appropriate and update the state
 | |
|  * for the next record.
 | |
|  *
 | |
|  * The states are all based on possible server record types. Note that the
 | |
|  * client will never specifically expect to receive a HelloRequest or an alert
 | |
|  * from the server so there is no state that reflects this. These messages may
 | |
|  * occur at any time.
 | |
|  *
 | |
|  * There are two tables for mapping states because there is a second tier of
 | |
|  * types for handshake messages. Once a record with a content type of handshake
 | |
|  * is received, the handshake record handler will look up the handshake type in
 | |
|  * the secondary map to get its appropriate handler.
 | |
|  *
 | |
|  * Valid message orders are as follows:
 | |
|  *
 | |
|  * =======================FULL HANDSHAKE======================
 | |
|  * Client                                               Server
 | |
|  *
 | |
|  * ClientHello                  -------->
 | |
|  *                                                 ServerHello
 | |
|  *                                                Certificate*
 | |
|  *                                          ServerKeyExchange*
 | |
|  *                                         CertificateRequest*
 | |
|  *                              <--------      ServerHelloDone
 | |
|  * Certificate*
 | |
|  * ClientKeyExchange
 | |
|  * CertificateVerify*
 | |
|  * [ChangeCipherSpec]
 | |
|  * Finished                     -------->
 | |
|  *                                          [ChangeCipherSpec]
 | |
|  *                              <--------             Finished
 | |
|  * Application Data             <------->     Application Data
 | |
|  *
 | |
|  * =====================SESSION RESUMPTION=====================
 | |
|  * Client                                                Server
 | |
|  *
 | |
|  * ClientHello                   -------->
 | |
|  *                                                  ServerHello
 | |
|  *                                           [ChangeCipherSpec]
 | |
|  *                               <--------             Finished
 | |
|  * [ChangeCipherSpec]
 | |
|  * Finished                      -------->
 | |
|  * Application Data              <------->     Application Data
 | |
|  */
 | |
| // client expect states (indicate which records are expected to be received)
 | |
| var SHE = 0; // rcv server hello
 | |
| var SCE = 1; // rcv server certificate
 | |
| var SKE = 2; // rcv server key exchange
 | |
| var SCR = 3; // rcv certificate request
 | |
| var SHD = 4; // rcv server hello done
 | |
| var SCC = 5; // rcv change cipher spec
 | |
| var SFI = 6; // rcv finished
 | |
| var SAD = 7; // rcv application data
 | |
| var SER = 8; // not expecting any messages at this point
 | |
| 
 | |
| // server expect states
 | |
| var CHE = 0; // rcv client hello
 | |
| var CCE = 1; // rcv client certificate
 | |
| var CKE = 2; // rcv client key exchange
 | |
| var CCV = 3; // rcv certificate verify
 | |
| var CCC = 4; // rcv change cipher spec
 | |
| var CFI = 5; // rcv finished
 | |
| var CAD = 6; // rcv application data
 | |
| var CER = 7; // not expecting any messages at this point
 | |
| 
 | |
| // map client current expect state and content type to function
 | |
| var __ = tls.handleUnexpected;
 | |
| var R0 = tls.handleChangeCipherSpec;
 | |
| var R1 = tls.handleAlert;
 | |
| var R2 = tls.handleHandshake;
 | |
| var R3 = tls.handleApplicationData;
 | |
| var R4 = tls.handleHeartbeat;
 | |
| var ctTable = [];
 | |
| ctTable[tls.ConnectionEnd.client] = [
 | |
| //      CC,AL,HS,AD,HB
 | |
| /*SHE*/[__,R1,R2,__,R4],
 | |
| /*SCE*/[__,R1,R2,__,R4],
 | |
| /*SKE*/[__,R1,R2,__,R4],
 | |
| /*SCR*/[__,R1,R2,__,R4],
 | |
| /*SHD*/[__,R1,R2,__,R4],
 | |
| /*SCC*/[R0,R1,__,__,R4],
 | |
| /*SFI*/[__,R1,R2,__,R4],
 | |
| /*SAD*/[__,R1,R2,R3,R4],
 | |
| /*SER*/[__,R1,R2,__,R4]
 | |
| ];
 | |
| 
 | |
| // map server current expect state and content type to function
 | |
| ctTable[tls.ConnectionEnd.server] = [
 | |
| //      CC,AL,HS,AD
 | |
| /*CHE*/[__,R1,R2,__,R4],
 | |
| /*CCE*/[__,R1,R2,__,R4],
 | |
| /*CKE*/[__,R1,R2,__,R4],
 | |
| /*CCV*/[__,R1,R2,__,R4],
 | |
| /*CCC*/[R0,R1,__,__,R4],
 | |
| /*CFI*/[__,R1,R2,__,R4],
 | |
| /*CAD*/[__,R1,R2,R3,R4],
 | |
| /*CER*/[__,R1,R2,__,R4]
 | |
| ];
 | |
| 
 | |
| // map client current expect state and handshake type to function
 | |
| var H0 = tls.handleHelloRequest;
 | |
| var H1 = tls.handleServerHello;
 | |
| var H2 = tls.handleCertificate;
 | |
| var H3 = tls.handleServerKeyExchange;
 | |
| var H4 = tls.handleCertificateRequest;
 | |
| var H5 = tls.handleServerHelloDone;
 | |
| var H6 = tls.handleFinished;
 | |
| var hsTable = [];
 | |
| hsTable[tls.ConnectionEnd.client] = [
 | |
| //      HR,01,SH,03,04,05,06,07,08,09,10,SC,SK,CR,HD,15,CK,17,18,19,FI
 | |
| /*SHE*/[__,__,H1,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__],
 | |
| /*SCE*/[H0,__,__,__,__,__,__,__,__,__,__,H2,H3,H4,H5,__,__,__,__,__,__],
 | |
| /*SKE*/[H0,__,__,__,__,__,__,__,__,__,__,__,H3,H4,H5,__,__,__,__,__,__],
 | |
| /*SCR*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,H4,H5,__,__,__,__,__,__],
 | |
| /*SHD*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,H5,__,__,__,__,__,__],
 | |
| /*SCC*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__],
 | |
| /*SFI*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,H6],
 | |
| /*SAD*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__],
 | |
| /*SER*/[H0,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__]
 | |
| ];
 | |
| 
 | |
| // map server current expect state and handshake type to function
 | |
| // Note: CAD[CH] does not map to FB because renegotation is prohibited
 | |
| var H7 = tls.handleClientHello;
 | |
| var H8 = tls.handleClientKeyExchange;
 | |
| var H9 = tls.handleCertificateVerify;
 | |
| hsTable[tls.ConnectionEnd.server] = [
 | |
| //      01,CH,02,03,04,05,06,07,08,09,10,CC,12,13,14,CV,CK,17,18,19,FI
 | |
| /*CHE*/[__,H7,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__],
 | |
| /*CCE*/[__,__,__,__,__,__,__,__,__,__,__,H2,__,__,__,__,__,__,__,__,__],
 | |
| /*CKE*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,H8,__,__,__,__],
 | |
| /*CCV*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,H9,__,__,__,__,__],
 | |
| /*CCC*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__],
 | |
| /*CFI*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,H6],
 | |
| /*CAD*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__],
 | |
| /*CER*/[__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__,__]
 | |
| ];
 | |
| 
 | |
| /**
 | |
|  * Generates the master_secret and keys using the given security parameters.
 | |
|  *
 | |
|  * The security parameters for a TLS connection state are defined as such:
 | |
|  *
 | |
|  * struct {
 | |
|  *   ConnectionEnd          entity;
 | |
|  *   PRFAlgorithm           prf_algorithm;
 | |
|  *   BulkCipherAlgorithm    bulk_cipher_algorithm;
 | |
|  *   CipherType             cipher_type;
 | |
|  *   uint8                  enc_key_length;
 | |
|  *   uint8                  block_length;
 | |
|  *   uint8                  fixed_iv_length;
 | |
|  *   uint8                  record_iv_length;
 | |
|  *   MACAlgorithm           mac_algorithm;
 | |
|  *   uint8                  mac_length;
 | |
|  *   uint8                  mac_key_length;
 | |
|  *   CompressionMethod      compression_algorithm;
 | |
|  *   opaque                 master_secret[48];
 | |
|  *   opaque                 client_random[32];
 | |
|  *   opaque                 server_random[32];
 | |
|  * } SecurityParameters;
 | |
|  *
 | |
|  * Note that this definition is from TLS 1.2. In TLS 1.0 some of these
 | |
|  * parameters are ignored because, for instance, the PRFAlgorithm is a
 | |
|  * builtin-fixed algorithm combining iterations of MD5 and SHA-1 in TLS 1.0.
 | |
|  *
 | |
|  * The Record Protocol requires an algorithm to generate keys required by the
 | |
|  * current connection state.
 | |
|  *
 | |
|  * The master secret is expanded into a sequence of secure bytes, which is then
 | |
|  * split to a client write MAC key, a server write MAC key, a client write
 | |
|  * encryption key, and a server write encryption key. In TLS 1.0 a client write
 | |
|  * IV and server write IV are also generated. Each of these is generated from
 | |
|  * the byte sequence in that order. Unused values are empty. In TLS 1.2, some
 | |
|  * AEAD ciphers may additionally require a client write IV and a server write
 | |
|  * IV (see Section 6.2.3.3).
 | |
|  *
 | |
|  * When keys, MAC keys, and IVs are generated, the master secret is used as an
 | |
|  * entropy source.
 | |
|  *
 | |
|  * To generate the key material, compute:
 | |
|  *
 | |
|  * master_secret = PRF(pre_master_secret, "master secret",
 | |
|  *                     ClientHello.random + ServerHello.random)
 | |
|  *
 | |
|  * key_block = PRF(SecurityParameters.master_secret,
 | |
|  *                 "key expansion",
 | |
|  *                 SecurityParameters.server_random +
 | |
|  *                 SecurityParameters.client_random);
 | |
|  *
 | |
|  * until enough output has been generated. Then, the key_block is
 | |
|  * partitioned as follows:
 | |
|  *
 | |
|  * client_write_MAC_key[SecurityParameters.mac_key_length]
 | |
|  * server_write_MAC_key[SecurityParameters.mac_key_length]
 | |
|  * client_write_key[SecurityParameters.enc_key_length]
 | |
|  * server_write_key[SecurityParameters.enc_key_length]
 | |
|  * client_write_IV[SecurityParameters.fixed_iv_length]
 | |
|  * server_write_IV[SecurityParameters.fixed_iv_length]
 | |
|  *
 | |
|  * In TLS 1.2, the client_write_IV and server_write_IV are only generated for
 | |
|  * implicit nonce techniques as described in Section 3.2.1 of [AEAD]. This
 | |
|  * implementation uses TLS 1.0 so IVs are generated.
 | |
|  *
 | |
|  * Implementation note: The currently defined cipher suite which requires the
 | |
|  * most material is AES_256_CBC_SHA256. It requires 2 x 32 byte keys and 2 x 32
 | |
|  * byte MAC keys, for a total 128 bytes of key material. In TLS 1.0 it also
 | |
|  * requires 2 x 16 byte IVs, so it actually takes 160 bytes of key material.
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  * @param sp the security parameters to use.
 | |
|  *
 | |
|  * @return the security keys.
 | |
|  */
 | |
| tls.generateKeys = function(c, sp) {
 | |
|   // TLS_RSA_WITH_AES_128_CBC_SHA (required to be compliant with TLS 1.2) &
 | |
|   // TLS_RSA_WITH_AES_256_CBC_SHA are the only cipher suites implemented
 | |
|   // at present
 | |
| 
 | |
|   // TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA is required to be compliant with
 | |
|   // TLS 1.0 but we don't care right now because AES is better and we have
 | |
|   // an implementation for it
 | |
| 
 | |
|   // TODO: TLS 1.2 implementation
 | |
|   /*
 | |
|   // determine the PRF
 | |
|   var prf;
 | |
|   switch(sp.prf_algorithm) {
 | |
|   case tls.PRFAlgorithm.tls_prf_sha256:
 | |
|     prf = prf_sha256;
 | |
|     break;
 | |
|   default:
 | |
|     // should never happen
 | |
|     throw new Error('Invalid PRF');
 | |
|   }
 | |
|   */
 | |
| 
 | |
|   // TLS 1.0/1.1 implementation
 | |
|   var prf = prf_TLS1;
 | |
| 
 | |
|   // concatenate server and client random
 | |
|   var random = sp.client_random + sp.server_random;
 | |
| 
 | |
|   // only create master secret if session is new
 | |
|   if(!c.session.resuming) {
 | |
|     // create master secret, clean up pre-master secret
 | |
|     sp.master_secret = prf(
 | |
|       sp.pre_master_secret, 'master secret', random, 48).bytes();
 | |
|     sp.pre_master_secret = null;
 | |
|   }
 | |
| 
 | |
|   // generate the amount of key material needed
 | |
|   random = sp.server_random + sp.client_random;
 | |
|   var length = 2 * sp.mac_key_length + 2 * sp.enc_key_length;
 | |
| 
 | |
|   // include IV for TLS/1.0
 | |
|   var tls10 = (c.version.major === tls.Versions.TLS_1_0.major &&
 | |
|     c.version.minor === tls.Versions.TLS_1_0.minor);
 | |
|   if(tls10) {
 | |
|     length += 2 * sp.fixed_iv_length;
 | |
|   }
 | |
|   var km = prf(sp.master_secret, 'key expansion', random, length);
 | |
| 
 | |
|   // split the key material into the MAC and encryption keys
 | |
|   var rval = {
 | |
|     client_write_MAC_key: km.getBytes(sp.mac_key_length),
 | |
|     server_write_MAC_key: km.getBytes(sp.mac_key_length),
 | |
|     client_write_key: km.getBytes(sp.enc_key_length),
 | |
|     server_write_key: km.getBytes(sp.enc_key_length)
 | |
|   };
 | |
| 
 | |
|   // include TLS 1.0 IVs
 | |
|   if(tls10) {
 | |
|     rval.client_write_IV = km.getBytes(sp.fixed_iv_length);
 | |
|     rval.server_write_IV = km.getBytes(sp.fixed_iv_length);
 | |
|   }
 | |
| 
 | |
|   return rval;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Creates a new initialized TLS connection state. A connection state has
 | |
|  * a read mode and a write mode.
 | |
|  *
 | |
|  * compression state:
 | |
|  *   The current state of the compression algorithm.
 | |
|  *
 | |
|  * cipher state:
 | |
|  *   The current state of the encryption algorithm. This will consist of the
 | |
|  *   scheduled key for that connection. For stream ciphers, this will also
 | |
|  *   contain whatever state information is necessary to allow the stream to
 | |
|  *   continue to encrypt or decrypt data.
 | |
|  *
 | |
|  * MAC key:
 | |
|  *   The MAC key for the connection.
 | |
|  *
 | |
|  * sequence number:
 | |
|  *   Each connection state contains a sequence number, which is maintained
 | |
|  *   separately for read and write states. The sequence number MUST be set to
 | |
|  *   zero whenever a connection state is made the active state. Sequence
 | |
|  *   numbers are of type uint64 and may not exceed 2^64-1. Sequence numbers do
 | |
|  *   not wrap. If a TLS implementation would need to wrap a sequence number,
 | |
|  *   it must renegotiate instead. A sequence number is incremented after each
 | |
|  *   record: specifically, the first record transmitted under a particular
 | |
|  *   connection state MUST use sequence number 0.
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  *
 | |
|  * @return the new initialized TLS connection state.
 | |
|  */
 | |
| tls.createConnectionState = function(c) {
 | |
|   var client = (c.entity === tls.ConnectionEnd.client);
 | |
| 
 | |
|   var createMode = function() {
 | |
|     var mode = {
 | |
|       // two 32-bit numbers, first is most significant
 | |
|       sequenceNumber: [0, 0],
 | |
|       macKey: null,
 | |
|       macLength: 0,
 | |
|       macFunction: null,
 | |
|       cipherState: null,
 | |
|       cipherFunction: function(record) {return true;},
 | |
|       compressionState: null,
 | |
|       compressFunction: function(record) {return true;},
 | |
|       updateSequenceNumber: function() {
 | |
|         if(mode.sequenceNumber[1] === 0xFFFFFFFF) {
 | |
|           mode.sequenceNumber[1] = 0;
 | |
|           ++mode.sequenceNumber[0];
 | |
|         } else {
 | |
|           ++mode.sequenceNumber[1];
 | |
|         }
 | |
|       }
 | |
|     };
 | |
|     return mode;
 | |
|   };
 | |
|   var state = {
 | |
|     read: createMode(),
 | |
|     write: createMode()
 | |
|   };
 | |
| 
 | |
|   // update function in read mode will decrypt then decompress a record
 | |
|   state.read.update = function(c, record) {
 | |
|     if(!state.read.cipherFunction(record, state.read)) {
 | |
|       c.error(c, {
 | |
|         message: 'Could not decrypt record or bad MAC.',
 | |
|         send: true,
 | |
|         alert: {
 | |
|           level: tls.Alert.Level.fatal,
 | |
|           // doesn't matter if decryption failed or MAC was
 | |
|           // invalid, return the same error so as not to reveal
 | |
|           // which one occurred
 | |
|           description: tls.Alert.Description.bad_record_mac
 | |
|         }
 | |
|       });
 | |
|     } else if(!state.read.compressFunction(c, record, state.read)) {
 | |
|       c.error(c, {
 | |
|         message: 'Could not decompress record.',
 | |
|         send: true,
 | |
|         alert: {
 | |
|           level: tls.Alert.Level.fatal,
 | |
|           description: tls.Alert.Description.decompression_failure
 | |
|         }
 | |
|       });
 | |
|     }
 | |
|     return !c.fail;
 | |
|   };
 | |
| 
 | |
|   // update function in write mode will compress then encrypt a record
 | |
|   state.write.update = function(c, record) {
 | |
|     if(!state.write.compressFunction(c, record, state.write)) {
 | |
|       // error, but do not send alert since it would require
 | |
|       // compression as well
 | |
|       c.error(c, {
 | |
|         message: 'Could not compress record.',
 | |
|         send: false,
 | |
|         alert: {
 | |
|           level: tls.Alert.Level.fatal,
 | |
|           description: tls.Alert.Description.internal_error
 | |
|         }
 | |
|       });
 | |
|     } else if(!state.write.cipherFunction(record, state.write)) {
 | |
|       // error, but do not send alert since it would require
 | |
|       // encryption as well
 | |
|       c.error(c, {
 | |
|         message: 'Could not encrypt record.',
 | |
|         send: false,
 | |
|         alert: {
 | |
|           level: tls.Alert.Level.fatal,
 | |
|           description: tls.Alert.Description.internal_error
 | |
|         }
 | |
|       });
 | |
|     }
 | |
|     return !c.fail;
 | |
|   };
 | |
| 
 | |
|   // handle security parameters
 | |
|   if(c.session) {
 | |
|     var sp = c.session.sp;
 | |
|     c.session.cipherSuite.initSecurityParameters(sp);
 | |
| 
 | |
|     // generate keys
 | |
|     sp.keys = tls.generateKeys(c, sp);
 | |
|     state.read.macKey = client ?
 | |
|       sp.keys.server_write_MAC_key : sp.keys.client_write_MAC_key;
 | |
|     state.write.macKey = client ?
 | |
|       sp.keys.client_write_MAC_key : sp.keys.server_write_MAC_key;
 | |
| 
 | |
|     // cipher suite setup
 | |
|     c.session.cipherSuite.initConnectionState(state, c, sp);
 | |
| 
 | |
|     // compression setup
 | |
|     switch(sp.compression_algorithm) {
 | |
|     case tls.CompressionMethod.none:
 | |
|       break;
 | |
|     case tls.CompressionMethod.deflate:
 | |
|       state.read.compressFunction = inflate;
 | |
|       state.write.compressFunction = deflate;
 | |
|       break;
 | |
|     default:
 | |
|       throw new Error('Unsupported compression algorithm.');
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return state;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Creates a Random structure.
 | |
|  *
 | |
|  * struct {
 | |
|  *   uint32 gmt_unix_time;
 | |
|  *   opaque random_bytes[28];
 | |
|  * } Random;
 | |
|  *
 | |
|  * gmt_unix_time:
 | |
|  *   The current time and date in standard UNIX 32-bit format (seconds since
 | |
|  *   the midnight starting Jan 1, 1970, UTC, ignoring leap seconds) according
 | |
|  *   to the sender's internal clock. Clocks are not required to be set
 | |
|  *   correctly by the basic TLS protocol; higher-level or application
 | |
|  *   protocols may define additional requirements. Note that, for historical
 | |
|  *   reasons, the data element is named using GMT, the predecessor of the
 | |
|  *   current worldwide time base, UTC.
 | |
|  * random_bytes:
 | |
|  *   28 bytes generated by a secure random number generator.
 | |
|  *
 | |
|  * @return the Random structure as a byte array.
 | |
|  */
 | |
| tls.createRandom = function() {
 | |
|   // get UTC milliseconds
 | |
|   var d = new Date();
 | |
|   var utc = +d + d.getTimezoneOffset() * 60000;
 | |
|   var rval = forge.util.createBuffer();
 | |
|   rval.putInt32(utc);
 | |
|   rval.putBytes(forge.random.getBytes(28));
 | |
|   return rval;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Creates a TLS record with the given type and data.
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  * @param options:
 | |
|  *   type: the record type.
 | |
|  *   data: the plain text data in a byte buffer.
 | |
|  *
 | |
|  * @return the created record.
 | |
|  */
 | |
| tls.createRecord = function(c, options) {
 | |
|   if(!options.data) {
 | |
|     return null;
 | |
|   }
 | |
|   var record = {
 | |
|     type: options.type,
 | |
|     version: {
 | |
|       major: c.version.major,
 | |
|       minor: c.version.minor
 | |
|     },
 | |
|     length: options.data.length(),
 | |
|     fragment: options.data
 | |
|   };
 | |
|   return record;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Creates a TLS alert record.
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  * @param alert:
 | |
|  *   level: the TLS alert level.
 | |
|  *   description: the TLS alert description.
 | |
|  *
 | |
|  * @return the created alert record.
 | |
|  */
 | |
| tls.createAlert = function(c, alert) {
 | |
|   var b = forge.util.createBuffer();
 | |
|   b.putByte(alert.level);
 | |
|   b.putByte(alert.description);
 | |
|   return tls.createRecord(c, {
 | |
|     type: tls.ContentType.alert,
 | |
|     data: b
 | |
|   });
 | |
| };
 | |
| 
 | |
| /* The structure of a TLS handshake message.
 | |
|  *
 | |
|  * struct {
 | |
|  *    HandshakeType msg_type;    // handshake type
 | |
|  *    uint24 length;             // bytes in message
 | |
|  *    select(HandshakeType) {
 | |
|  *       case hello_request:       HelloRequest;
 | |
|  *       case client_hello:        ClientHello;
 | |
|  *       case server_hello:        ServerHello;
 | |
|  *       case certificate:         Certificate;
 | |
|  *       case server_key_exchange: ServerKeyExchange;
 | |
|  *       case certificate_request: CertificateRequest;
 | |
|  *       case server_hello_done:   ServerHelloDone;
 | |
|  *       case certificate_verify:  CertificateVerify;
 | |
|  *       case client_key_exchange: ClientKeyExchange;
 | |
|  *       case finished:            Finished;
 | |
|  *    } body;
 | |
|  * } Handshake;
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * Creates a ClientHello message.
 | |
|  *
 | |
|  * opaque SessionID<0..32>;
 | |
|  * enum { null(0), deflate(1), (255) } CompressionMethod;
 | |
|  * uint8 CipherSuite[2];
 | |
|  *
 | |
|  * struct {
 | |
|  *   ProtocolVersion client_version;
 | |
|  *   Random random;
 | |
|  *   SessionID session_id;
 | |
|  *   CipherSuite cipher_suites<2..2^16-2>;
 | |
|  *   CompressionMethod compression_methods<1..2^8-1>;
 | |
|  *   select(extensions_present) {
 | |
|  *     case false:
 | |
|  *       struct {};
 | |
|  *     case true:
 | |
|  *       Extension extensions<0..2^16-1>;
 | |
|  *   };
 | |
|  * } ClientHello;
 | |
|  *
 | |
|  * The extension format for extended client hellos and server hellos is:
 | |
|  *
 | |
|  * struct {
 | |
|  *   ExtensionType extension_type;
 | |
|  *   opaque extension_data<0..2^16-1>;
 | |
|  * } Extension;
 | |
|  *
 | |
|  * Here:
 | |
|  *
 | |
|  * - "extension_type" identifies the particular extension type.
 | |
|  * - "extension_data" contains information specific to the particular
 | |
|  * extension type.
 | |
|  *
 | |
|  * The extension types defined in this document are:
 | |
|  *
 | |
|  * enum {
 | |
|  *   server_name(0), max_fragment_length(1),
 | |
|  *   client_certificate_url(2), trusted_ca_keys(3),
 | |
|  *   truncated_hmac(4), status_request(5), (65535)
 | |
|  * } ExtensionType;
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  *
 | |
|  * @return the ClientHello byte buffer.
 | |
|  */
 | |
| tls.createClientHello = function(c) {
 | |
|   // save hello version
 | |
|   c.session.clientHelloVersion = {
 | |
|     major: c.version.major,
 | |
|     minor: c.version.minor
 | |
|   };
 | |
| 
 | |
|   // create supported cipher suites
 | |
|   var cipherSuites = forge.util.createBuffer();
 | |
|   for(var i = 0; i < c.cipherSuites.length; ++i) {
 | |
|     var cs = c.cipherSuites[i];
 | |
|     cipherSuites.putByte(cs.id[0]);
 | |
|     cipherSuites.putByte(cs.id[1]);
 | |
|   }
 | |
|   var cSuites = cipherSuites.length();
 | |
| 
 | |
|   // create supported compression methods, null always supported, but
 | |
|   // also support deflate if connection has inflate and deflate methods
 | |
|   var compressionMethods = forge.util.createBuffer();
 | |
|   compressionMethods.putByte(tls.CompressionMethod.none);
 | |
|   // FIXME: deflate support disabled until issues with raw deflate data
 | |
|   // without zlib headers are resolved
 | |
|   /*
 | |
|   if(c.inflate !== null && c.deflate !== null) {
 | |
|     compressionMethods.putByte(tls.CompressionMethod.deflate);
 | |
|   }
 | |
|   */
 | |
|   var cMethods = compressionMethods.length();
 | |
| 
 | |
|   // create TLS SNI (server name indication) extension if virtual host
 | |
|   // has been specified, see RFC 3546
 | |
|   var extensions = forge.util.createBuffer();
 | |
|   if(c.virtualHost) {
 | |
|     // create extension struct
 | |
|     var ext = forge.util.createBuffer();
 | |
|     ext.putByte(0x00); // type server_name (ExtensionType is 2 bytes)
 | |
|     ext.putByte(0x00);
 | |
| 
 | |
|     /* In order to provide the server name, clients MAY include an
 | |
|      * extension of type "server_name" in the (extended) client hello.
 | |
|      * The "extension_data" field of this extension SHALL contain
 | |
|      * "ServerNameList" where:
 | |
|      *
 | |
|      * struct {
 | |
|      *   NameType name_type;
 | |
|      *   select(name_type) {
 | |
|      *     case host_name: HostName;
 | |
|      *   } name;
 | |
|      * } ServerName;
 | |
|      *
 | |
|      * enum {
 | |
|      *   host_name(0), (255)
 | |
|      * } NameType;
 | |
|      *
 | |
|      * opaque HostName<1..2^16-1>;
 | |
|      *
 | |
|      * struct {
 | |
|      *   ServerName server_name_list<1..2^16-1>
 | |
|      * } ServerNameList;
 | |
|      */
 | |
|     var serverName = forge.util.createBuffer();
 | |
|     serverName.putByte(0x00); // type host_name
 | |
|     writeVector(serverName, 2, forge.util.createBuffer(c.virtualHost));
 | |
| 
 | |
|     // ServerNameList is in extension_data
 | |
|     var snList = forge.util.createBuffer();
 | |
|     writeVector(snList, 2, serverName);
 | |
|     writeVector(ext, 2, snList);
 | |
|     extensions.putBuffer(ext);
 | |
|   }
 | |
|   var extLength = extensions.length();
 | |
|   if(extLength > 0) {
 | |
|     // add extension vector length
 | |
|     extLength += 2;
 | |
|   }
 | |
| 
 | |
|   // determine length of the handshake message
 | |
|   // cipher suites and compression methods size will need to be
 | |
|   // updated if more get added to the list
 | |
|   var sessionId = c.session.id;
 | |
|   var length =
 | |
|     sessionId.length + 1 + // session ID vector
 | |
|     2 +                    // version (major + minor)
 | |
|     4 + 28 +               // random time and random bytes
 | |
|     2 + cSuites +          // cipher suites vector
 | |
|     1 + cMethods +         // compression methods vector
 | |
|     extLength;             // extensions vector
 | |
| 
 | |
|   // build record fragment
 | |
|   var rval = forge.util.createBuffer();
 | |
|   rval.putByte(tls.HandshakeType.client_hello);
 | |
|   rval.putInt24(length);                     // handshake length
 | |
|   rval.putByte(c.version.major);             // major version
 | |
|   rval.putByte(c.version.minor);             // minor version
 | |
|   rval.putBytes(c.session.sp.client_random); // random time + bytes
 | |
|   writeVector(rval, 1, forge.util.createBuffer(sessionId));
 | |
|   writeVector(rval, 2, cipherSuites);
 | |
|   writeVector(rval, 1, compressionMethods);
 | |
|   if(extLength > 0) {
 | |
|     writeVector(rval, 2, extensions);
 | |
|   }
 | |
|   return rval;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Creates a ServerHello message.
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  *
 | |
|  * @return the ServerHello byte buffer.
 | |
|  */
 | |
| tls.createServerHello = function(c) {
 | |
|   // determine length of the handshake message
 | |
|   var sessionId = c.session.id;
 | |
|   var length =
 | |
|     sessionId.length + 1 + // session ID vector
 | |
|     2 +                    // version (major + minor)
 | |
|     4 + 28 +               // random time and random bytes
 | |
|     2 +                    // chosen cipher suite
 | |
|     1;                     // chosen compression method
 | |
| 
 | |
|   // build record fragment
 | |
|   var rval = forge.util.createBuffer();
 | |
|   rval.putByte(tls.HandshakeType.server_hello);
 | |
|   rval.putInt24(length);                     // handshake length
 | |
|   rval.putByte(c.version.major);             // major version
 | |
|   rval.putByte(c.version.minor);             // minor version
 | |
|   rval.putBytes(c.session.sp.server_random); // random time + bytes
 | |
|   writeVector(rval, 1, forge.util.createBuffer(sessionId));
 | |
|   rval.putByte(c.session.cipherSuite.id[0]);
 | |
|   rval.putByte(c.session.cipherSuite.id[1]);
 | |
|   rval.putByte(c.session.compressionMethod);
 | |
|   return rval;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Creates a Certificate message.
 | |
|  *
 | |
|  * When this message will be sent:
 | |
|  *   This is the first message the client can send after receiving a server
 | |
|  *   hello done message and the first message the server can send after
 | |
|  *   sending a ServerHello. This client message is only sent if the server
 | |
|  *   requests a certificate. If no suitable certificate is available, the
 | |
|  *   client should send a certificate message containing no certificates. If
 | |
|  *   client authentication is required by the server for the handshake to
 | |
|  *   continue, it may respond with a fatal handshake failure alert.
 | |
|  *
 | |
|  * opaque ASN.1Cert<1..2^24-1>;
 | |
|  *
 | |
|  * struct {
 | |
|  *   ASN.1Cert certificate_list<0..2^24-1>;
 | |
|  * } Certificate;
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  *
 | |
|  * @return the Certificate byte buffer.
 | |
|  */
 | |
| tls.createCertificate = function(c) {
 | |
|   // TODO: check certificate request to ensure types are supported
 | |
| 
 | |
|   // get a certificate (a certificate as a PEM string)
 | |
|   var client = (c.entity === tls.ConnectionEnd.client);
 | |
|   var cert = null;
 | |
|   if(c.getCertificate) {
 | |
|     var hint;
 | |
|     if(client) {
 | |
|       hint = c.session.certificateRequest;
 | |
|     } else {
 | |
|       hint = c.session.extensions.server_name.serverNameList;
 | |
|     }
 | |
|     cert = c.getCertificate(c, hint);
 | |
|   }
 | |
| 
 | |
|   // buffer to hold certificate list
 | |
|   var certList = forge.util.createBuffer();
 | |
|   if(cert !== null) {
 | |
|     try {
 | |
|       // normalize cert to a chain of certificates
 | |
|       if(!forge.util.isArray(cert)) {
 | |
|         cert = [cert];
 | |
|       }
 | |
|       var asn1 = null;
 | |
|       for(var i = 0; i < cert.length; ++i) {
 | |
|         var msg = forge.pem.decode(cert[i])[0];
 | |
|         if(msg.type !== 'CERTIFICATE' &&
 | |
|           msg.type !== 'X509 CERTIFICATE' &&
 | |
|           msg.type !== 'TRUSTED CERTIFICATE') {
 | |
|           var error = new Error('Could not convert certificate from PEM; PEM ' +
 | |
|             'header type is not "CERTIFICATE", "X509 CERTIFICATE", or ' +
 | |
|             '"TRUSTED CERTIFICATE".');
 | |
|           error.headerType = msg.type;
 | |
|           throw error;
 | |
|         }
 | |
|         if(msg.procType && msg.procType.type === 'ENCRYPTED') {
 | |
|           throw new Error('Could not convert certificate from PEM; PEM is encrypted.');
 | |
|         }
 | |
| 
 | |
|         var der = forge.util.createBuffer(msg.body);
 | |
|         if(asn1 === null) {
 | |
|           asn1 = forge.asn1.fromDer(der.bytes(), false);
 | |
|         }
 | |
| 
 | |
|         // certificate entry is itself a vector with 3 length bytes
 | |
|         var certBuffer = forge.util.createBuffer();
 | |
|         writeVector(certBuffer, 3, der);
 | |
| 
 | |
|         // add cert vector to cert list vector
 | |
|         certList.putBuffer(certBuffer);
 | |
|       }
 | |
| 
 | |
|       // save certificate
 | |
|       cert = forge.pki.certificateFromAsn1(asn1);
 | |
|       if(client) {
 | |
|         c.session.clientCertificate = cert;
 | |
|       } else {
 | |
|         c.session.serverCertificate = cert;
 | |
|       }
 | |
|     } catch(ex) {
 | |
|       return c.error(c, {
 | |
|         message: 'Could not send certificate list.',
 | |
|         cause: ex,
 | |
|         send: true,
 | |
|         alert: {
 | |
|           level: tls.Alert.Level.fatal,
 | |
|           description: tls.Alert.Description.bad_certificate
 | |
|         }
 | |
|       });
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // determine length of the handshake message
 | |
|   var length = 3 + certList.length(); // cert list vector
 | |
| 
 | |
|   // build record fragment
 | |
|   var rval = forge.util.createBuffer();
 | |
|   rval.putByte(tls.HandshakeType.certificate);
 | |
|   rval.putInt24(length);
 | |
|   writeVector(rval, 3, certList);
 | |
|   return rval;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Creates a ClientKeyExchange message.
 | |
|  *
 | |
|  * When this message will be sent:
 | |
|  *   This message is always sent by the client. It will immediately follow the
 | |
|  *   client certificate message, if it is sent. Otherwise it will be the first
 | |
|  *   message sent by the client after it receives the server hello done
 | |
|  *   message.
 | |
|  *
 | |
|  * Meaning of this message:
 | |
|  *   With this message, the premaster secret is set, either though direct
 | |
|  *   transmission of the RSA-encrypted secret, or by the transmission of
 | |
|  *   Diffie-Hellman parameters which will allow each side to agree upon the
 | |
|  *   same premaster secret. When the key exchange method is DH_RSA or DH_DSS,
 | |
|  *   client certification has been requested, and the client was able to
 | |
|  *   respond with a certificate which contained a Diffie-Hellman public key
 | |
|  *   whose parameters (group and generator) matched those specified by the
 | |
|  *   server in its certificate, this message will not contain any data.
 | |
|  *
 | |
|  * Meaning of this message:
 | |
|  *   If RSA is being used for key agreement and authentication, the client
 | |
|  *   generates a 48-byte premaster secret, encrypts it using the public key
 | |
|  *   from the server's certificate or the temporary RSA key provided in a
 | |
|  *   server key exchange message, and sends the result in an encrypted
 | |
|  *   premaster secret message. This structure is a variant of the client
 | |
|  *   key exchange message, not a message in itself.
 | |
|  *
 | |
|  * struct {
 | |
|  *   select(KeyExchangeAlgorithm) {
 | |
|  *     case rsa: EncryptedPreMasterSecret;
 | |
|  *     case diffie_hellman: ClientDiffieHellmanPublic;
 | |
|  *   } exchange_keys;
 | |
|  * } ClientKeyExchange;
 | |
|  *
 | |
|  * struct {
 | |
|  *   ProtocolVersion client_version;
 | |
|  *   opaque random[46];
 | |
|  * } PreMasterSecret;
 | |
|  *
 | |
|  * struct {
 | |
|  *   public-key-encrypted PreMasterSecret pre_master_secret;
 | |
|  * } EncryptedPreMasterSecret;
 | |
|  *
 | |
|  * A public-key-encrypted element is encoded as a vector <0..2^16-1>.
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  *
 | |
|  * @return the ClientKeyExchange byte buffer.
 | |
|  */
 | |
| tls.createClientKeyExchange = function(c) {
 | |
|   // create buffer to encrypt
 | |
|   var b = forge.util.createBuffer();
 | |
| 
 | |
|   // add highest client-supported protocol to help server avoid version
 | |
|   // rollback attacks
 | |
|   b.putByte(c.session.clientHelloVersion.major);
 | |
|   b.putByte(c.session.clientHelloVersion.minor);
 | |
| 
 | |
|   // generate and add 46 random bytes
 | |
|   b.putBytes(forge.random.getBytes(46));
 | |
| 
 | |
|   // save pre-master secret
 | |
|   var sp = c.session.sp;
 | |
|   sp.pre_master_secret = b.getBytes();
 | |
| 
 | |
|   // RSA-encrypt the pre-master secret
 | |
|   var key = c.session.serverCertificate.publicKey;
 | |
|   b = key.encrypt(sp.pre_master_secret);
 | |
| 
 | |
|   /* Note: The encrypted pre-master secret will be stored in a
 | |
|     public-key-encrypted opaque vector that has the length prefixed using
 | |
|     2 bytes, so include those 2 bytes in the handshake message length. This
 | |
|     is done as a minor optimization instead of calling writeVector(). */
 | |
| 
 | |
|   // determine length of the handshake message
 | |
|   var length = b.length + 2;
 | |
| 
 | |
|   // build record fragment
 | |
|   var rval = forge.util.createBuffer();
 | |
|   rval.putByte(tls.HandshakeType.client_key_exchange);
 | |
|   rval.putInt24(length);
 | |
|   // add vector length bytes
 | |
|   rval.putInt16(b.length);
 | |
|   rval.putBytes(b);
 | |
|   return rval;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Creates a ServerKeyExchange message.
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  *
 | |
|  * @return the ServerKeyExchange byte buffer.
 | |
|  */
 | |
| tls.createServerKeyExchange = function(c) {
 | |
|   // this implementation only supports RSA, no Diffie-Hellman support,
 | |
|   // so this record is empty
 | |
| 
 | |
|   // determine length of the handshake message
 | |
|   var length = 0;
 | |
| 
 | |
|   // build record fragment
 | |
|   var rval = forge.util.createBuffer();
 | |
|   if(length > 0) {
 | |
|     rval.putByte(tls.HandshakeType.server_key_exchange);
 | |
|     rval.putInt24(length);
 | |
|   }
 | |
|   return rval;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Gets the signed data used to verify a client-side certificate. See
 | |
|  * tls.createCertificateVerify() for details.
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  * @param callback the callback to call once the signed data is ready.
 | |
|  */
 | |
| tls.getClientSignature = function(c, callback) {
 | |
|   // generate data to RSA encrypt
 | |
|   var b = forge.util.createBuffer();
 | |
|   b.putBuffer(c.session.md5.digest());
 | |
|   b.putBuffer(c.session.sha1.digest());
 | |
|   b = b.getBytes();
 | |
| 
 | |
|   // create default signing function as necessary
 | |
|   c.getSignature = c.getSignature || function(c, b, callback) {
 | |
|     // do rsa encryption, call callback
 | |
|     var privateKey = null;
 | |
|     if(c.getPrivateKey) {
 | |
|       try {
 | |
|         privateKey = c.getPrivateKey(c, c.session.clientCertificate);
 | |
|         privateKey = forge.pki.privateKeyFromPem(privateKey);
 | |
|       } catch(ex) {
 | |
|         c.error(c, {
 | |
|           message: 'Could not get private key.',
 | |
|           cause: ex,
 | |
|           send: true,
 | |
|           alert: {
 | |
|             level: tls.Alert.Level.fatal,
 | |
|             description: tls.Alert.Description.internal_error
 | |
|           }
 | |
|         });
 | |
|       }
 | |
|     }
 | |
|     if(privateKey === null) {
 | |
|       c.error(c, {
 | |
|         message: 'No private key set.',
 | |
|         send: true,
 | |
|         alert: {
 | |
|           level: tls.Alert.Level.fatal,
 | |
|           description: tls.Alert.Description.internal_error
 | |
|         }
 | |
|       });
 | |
|     } else {
 | |
|       b = privateKey.sign(b, null);
 | |
|     }
 | |
|     callback(c, b);
 | |
|   };
 | |
| 
 | |
|   // get client signature
 | |
|   c.getSignature(c, b, callback);
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Creates a CertificateVerify message.
 | |
|  *
 | |
|  * Meaning of this message:
 | |
|  *   This structure conveys the client's Diffie-Hellman public value
 | |
|  *   (Yc) if it was not already included in the client's certificate.
 | |
|  *   The encoding used for Yc is determined by the enumerated
 | |
|  *   PublicValueEncoding. This structure is a variant of the client
 | |
|  *   key exchange message, not a message in itself.
 | |
|  *
 | |
|  * When this message will be sent:
 | |
|  *   This message is used to provide explicit verification of a client
 | |
|  *   certificate. This message is only sent following a client
 | |
|  *   certificate that has signing capability (i.e. all certificates
 | |
|  *   except those containing fixed Diffie-Hellman parameters). When
 | |
|  *   sent, it will immediately follow the client key exchange message.
 | |
|  *
 | |
|  * struct {
 | |
|  *   Signature signature;
 | |
|  * } CertificateVerify;
 | |
|  *
 | |
|  * CertificateVerify.signature.md5_hash
 | |
|  *   MD5(handshake_messages);
 | |
|  *
 | |
|  * Certificate.signature.sha_hash
 | |
|  *   SHA(handshake_messages);
 | |
|  *
 | |
|  * Here handshake_messages refers to all handshake messages sent or
 | |
|  * received starting at client hello up to but not including this
 | |
|  * message, including the type and length fields of the handshake
 | |
|  * messages.
 | |
|  *
 | |
|  * select(SignatureAlgorithm) {
 | |
|  *   case anonymous: struct { };
 | |
|  *   case rsa:
 | |
|  *     digitally-signed struct {
 | |
|  *       opaque md5_hash[16];
 | |
|  *       opaque sha_hash[20];
 | |
|  *     };
 | |
|  *   case dsa:
 | |
|  *     digitally-signed struct {
 | |
|  *       opaque sha_hash[20];
 | |
|  *     };
 | |
|  * } Signature;
 | |
|  *
 | |
|  * In digital signing, one-way hash functions are used as input for a
 | |
|  * signing algorithm. A digitally-signed element is encoded as an opaque
 | |
|  * vector <0..2^16-1>, where the length is specified by the signing
 | |
|  * algorithm and key.
 | |
|  *
 | |
|  * In RSA signing, a 36-byte structure of two hashes (one SHA and one
 | |
|  * MD5) is signed (encrypted with the private key). It is encoded with
 | |
|  * PKCS #1 block type 0 or type 1 as described in [PKCS1].
 | |
|  *
 | |
|  * In DSS, the 20 bytes of the SHA hash are run directly through the
 | |
|  * Digital Signing Algorithm with no additional hashing.
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  * @param signature the signature to include in the message.
 | |
|  *
 | |
|  * @return the CertificateVerify byte buffer.
 | |
|  */
 | |
| tls.createCertificateVerify = function(c, signature) {
 | |
|   /* Note: The signature will be stored in a "digitally-signed" opaque
 | |
|     vector that has the length prefixed using 2 bytes, so include those
 | |
|     2 bytes in the handshake message length. This is done as a minor
 | |
|     optimization instead of calling writeVector(). */
 | |
| 
 | |
|   // determine length of the handshake message
 | |
|   var length = signature.length + 2;
 | |
| 
 | |
|   // build record fragment
 | |
|   var rval = forge.util.createBuffer();
 | |
|   rval.putByte(tls.HandshakeType.certificate_verify);
 | |
|   rval.putInt24(length);
 | |
|   // add vector length bytes
 | |
|   rval.putInt16(signature.length);
 | |
|   rval.putBytes(signature);
 | |
|   return rval;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Creates a CertificateRequest message.
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  *
 | |
|  * @return the CertificateRequest byte buffer.
 | |
|  */
 | |
| tls.createCertificateRequest = function(c) {
 | |
|   // TODO: support other certificate types
 | |
|   var certTypes = forge.util.createBuffer();
 | |
| 
 | |
|   // common RSA certificate type
 | |
|   certTypes.putByte(0x01);
 | |
| 
 | |
|   // add distinguished names from CA store
 | |
|   var cAs = forge.util.createBuffer();
 | |
|   for(var key in c.caStore.certs) {
 | |
|     var cert = c.caStore.certs[key];
 | |
|     var dn = forge.pki.distinguishedNameToAsn1(cert.subject);
 | |
|     var byteBuffer = forge.asn1.toDer(dn);
 | |
|     cAs.putInt16(byteBuffer.length());
 | |
|     cAs.putBuffer(byteBuffer);
 | |
|   }
 | |
| 
 | |
|   // TODO: TLS 1.2+ has a different format
 | |
| 
 | |
|   // determine length of the handshake message
 | |
|   var length =
 | |
|     1 + certTypes.length() +
 | |
|     2 + cAs.length();
 | |
| 
 | |
|   // build record fragment
 | |
|   var rval = forge.util.createBuffer();
 | |
|   rval.putByte(tls.HandshakeType.certificate_request);
 | |
|   rval.putInt24(length);
 | |
|   writeVector(rval, 1, certTypes);
 | |
|   writeVector(rval, 2, cAs);
 | |
|   return rval;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Creates a ServerHelloDone message.
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  *
 | |
|  * @return the ServerHelloDone byte buffer.
 | |
|  */
 | |
| tls.createServerHelloDone = function(c) {
 | |
|   // build record fragment
 | |
|   var rval = forge.util.createBuffer();
 | |
|   rval.putByte(tls.HandshakeType.server_hello_done);
 | |
|   rval.putInt24(0);
 | |
|   return rval;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Creates a ChangeCipherSpec message.
 | |
|  *
 | |
|  * The change cipher spec protocol exists to signal transitions in
 | |
|  * ciphering strategies. The protocol consists of a single message,
 | |
|  * which is encrypted and compressed under the current (not the pending)
 | |
|  * connection state. The message consists of a single byte of value 1.
 | |
|  *
 | |
|  * struct {
 | |
|  *   enum { change_cipher_spec(1), (255) } type;
 | |
|  * } ChangeCipherSpec;
 | |
|  *
 | |
|  * @return the ChangeCipherSpec byte buffer.
 | |
|  */
 | |
| tls.createChangeCipherSpec = function() {
 | |
|   var rval = forge.util.createBuffer();
 | |
|   rval.putByte(0x01);
 | |
|   return rval;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Creates a Finished message.
 | |
|  *
 | |
|  * struct {
 | |
|  *   opaque verify_data[12];
 | |
|  * } Finished;
 | |
|  *
 | |
|  * verify_data
 | |
|  *   PRF(master_secret, finished_label, MD5(handshake_messages) +
 | |
|  *   SHA-1(handshake_messages)) [0..11];
 | |
|  *
 | |
|  * finished_label
 | |
|  *   For Finished messages sent by the client, the string "client
 | |
|  *   finished". For Finished messages sent by the server, the
 | |
|  *   string "server finished".
 | |
|  *
 | |
|  * handshake_messages
 | |
|  *   All of the data from all handshake messages up to but not
 | |
|  *   including this message. This is only data visible at the
 | |
|  *   handshake layer and does not include record layer headers.
 | |
|  *   This is the concatenation of all the Handshake structures as
 | |
|  *   defined in 7.4 exchanged thus far.
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  *
 | |
|  * @return the Finished byte buffer.
 | |
|  */
 | |
| tls.createFinished = function(c) {
 | |
|   // generate verify_data
 | |
|   var b = forge.util.createBuffer();
 | |
|   b.putBuffer(c.session.md5.digest());
 | |
|   b.putBuffer(c.session.sha1.digest());
 | |
| 
 | |
|   // TODO: determine prf function and verify length for TLS 1.2
 | |
|   var client = (c.entity === tls.ConnectionEnd.client);
 | |
|   var sp = c.session.sp;
 | |
|   var vdl = 12;
 | |
|   var prf = prf_TLS1;
 | |
|   var label = client ? 'client finished' : 'server finished';
 | |
|   b = prf(sp.master_secret, label, b.getBytes(), vdl);
 | |
| 
 | |
|   // build record fragment
 | |
|   var rval = forge.util.createBuffer();
 | |
|   rval.putByte(tls.HandshakeType.finished);
 | |
|   rval.putInt24(b.length());
 | |
|   rval.putBuffer(b);
 | |
|   return rval;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Creates a HeartbeatMessage (See RFC 6520).
 | |
|  *
 | |
|  * struct {
 | |
|  *   HeartbeatMessageType type;
 | |
|  *   uint16 payload_length;
 | |
|  *   opaque payload[HeartbeatMessage.payload_length];
 | |
|  *   opaque padding[padding_length];
 | |
|  * } HeartbeatMessage;
 | |
|  *
 | |
|  * The total length of a HeartbeatMessage MUST NOT exceed 2^14 or
 | |
|  * max_fragment_length when negotiated as defined in [RFC6066].
 | |
|  *
 | |
|  * type: The message type, either heartbeat_request or heartbeat_response.
 | |
|  *
 | |
|  * payload_length: The length of the payload.
 | |
|  *
 | |
|  * payload: The payload consists of arbitrary content.
 | |
|  *
 | |
|  * padding: The padding is random content that MUST be ignored by the
 | |
|  *   receiver. The length of a HeartbeatMessage is TLSPlaintext.length
 | |
|  *   for TLS and DTLSPlaintext.length for DTLS. Furthermore, the
 | |
|  *   length of the type field is 1 byte, and the length of the
 | |
|  *   payload_length is 2. Therefore, the padding_length is
 | |
|  *   TLSPlaintext.length - payload_length - 3 for TLS and
 | |
|  *   DTLSPlaintext.length - payload_length - 3 for DTLS. The
 | |
|  *   padding_length MUST be at least 16.
 | |
|  *
 | |
|  * The sender of a HeartbeatMessage MUST use a random padding of at
 | |
|  * least 16 bytes. The padding of a received HeartbeatMessage message
 | |
|  * MUST be ignored.
 | |
|  *
 | |
|  * If the payload_length of a received HeartbeatMessage is too large,
 | |
|  * the received HeartbeatMessage MUST be discarded silently.
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  * @param type the tls.HeartbeatMessageType.
 | |
|  * @param payload the heartbeat data to send as the payload.
 | |
|  * @param [payloadLength] the payload length to use, defaults to the
 | |
|  *          actual payload length.
 | |
|  *
 | |
|  * @return the HeartbeatRequest byte buffer.
 | |
|  */
 | |
| tls.createHeartbeat = function(type, payload, payloadLength) {
 | |
|   if(typeof payloadLength === 'undefined') {
 | |
|     payloadLength = payload.length;
 | |
|   }
 | |
|   // build record fragment
 | |
|   var rval = forge.util.createBuffer();
 | |
|   rval.putByte(type);               // heartbeat message type
 | |
|   rval.putInt16(payloadLength);     // payload length
 | |
|   rval.putBytes(payload);           // payload
 | |
|   // padding
 | |
|   var plaintextLength = rval.length();
 | |
|   var paddingLength = Math.max(16, plaintextLength - payloadLength - 3);
 | |
|   rval.putBytes(forge.random.getBytes(paddingLength));
 | |
|   return rval;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Fragments, compresses, encrypts, and queues a record for delivery.
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  * @param record the record to queue.
 | |
|  */
 | |
| tls.queue = function(c, record) {
 | |
|   // error during record creation
 | |
|   if(!record) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if(record.fragment.length() === 0) {
 | |
|     if(record.type === tls.ContentType.handshake ||
 | |
|       record.type === tls.ContentType.alert ||
 | |
|       record.type === tls.ContentType.change_cipher_spec) {
 | |
|       // Empty handshake, alert of change cipher spec messages are not allowed per the TLS specification and should not be sent.
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // if the record is a handshake record, update handshake hashes
 | |
|   if(record.type === tls.ContentType.handshake) {
 | |
|     var bytes = record.fragment.bytes();
 | |
|     c.session.md5.update(bytes);
 | |
|     c.session.sha1.update(bytes);
 | |
|     bytes = null;
 | |
|   }
 | |
| 
 | |
|   // handle record fragmentation
 | |
|   var records;
 | |
|   if(record.fragment.length() <= tls.MaxFragment) {
 | |
|     records = [record];
 | |
|   } else {
 | |
|     // fragment data as long as it is too long
 | |
|     records = [];
 | |
|     var data = record.fragment.bytes();
 | |
|     while(data.length > tls.MaxFragment) {
 | |
|       records.push(tls.createRecord(c, {
 | |
|         type: record.type,
 | |
|         data: forge.util.createBuffer(data.slice(0, tls.MaxFragment))
 | |
|       }));
 | |
|       data = data.slice(tls.MaxFragment);
 | |
|     }
 | |
|     // add last record
 | |
|     if(data.length > 0) {
 | |
|       records.push(tls.createRecord(c, {
 | |
|         type: record.type,
 | |
|         data: forge.util.createBuffer(data)
 | |
|       }));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // compress and encrypt all fragmented records
 | |
|   for(var i = 0; i < records.length && !c.fail; ++i) {
 | |
|     // update the record using current write state
 | |
|     var rec = records[i];
 | |
|     var s = c.state.current.write;
 | |
|     if(s.update(c, rec)) {
 | |
|       // store record
 | |
|       c.records.push(rec);
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Flushes all queued records to the output buffer and calls the
 | |
|  * tlsDataReady() handler on the given connection.
 | |
|  *
 | |
|  * @param c the connection.
 | |
|  *
 | |
|  * @return true on success, false on failure.
 | |
|  */
 | |
| tls.flush = function(c) {
 | |
|   for(var i = 0; i < c.records.length; ++i) {
 | |
|     var record = c.records[i];
 | |
| 
 | |
|     // add record header and fragment
 | |
|     c.tlsData.putByte(record.type);
 | |
|     c.tlsData.putByte(record.version.major);
 | |
|     c.tlsData.putByte(record.version.minor);
 | |
|     c.tlsData.putInt16(record.fragment.length());
 | |
|     c.tlsData.putBuffer(c.records[i].fragment);
 | |
|   }
 | |
|   c.records = [];
 | |
|   return c.tlsDataReady(c);
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Maps a pki.certificateError to a tls.Alert.Description.
 | |
|  *
 | |
|  * @param error the error to map.
 | |
|  *
 | |
|  * @return the alert description.
 | |
|  */
 | |
| var _certErrorToAlertDesc = function(error) {
 | |
|   switch(error) {
 | |
|   case true:
 | |
|     return true;
 | |
|   case forge.pki.certificateError.bad_certificate:
 | |
|     return tls.Alert.Description.bad_certificate;
 | |
|   case forge.pki.certificateError.unsupported_certificate:
 | |
|     return tls.Alert.Description.unsupported_certificate;
 | |
|   case forge.pki.certificateError.certificate_revoked:
 | |
|     return tls.Alert.Description.certificate_revoked;
 | |
|   case forge.pki.certificateError.certificate_expired:
 | |
|     return tls.Alert.Description.certificate_expired;
 | |
|   case forge.pki.certificateError.certificate_unknown:
 | |
|     return tls.Alert.Description.certificate_unknown;
 | |
|   case forge.pki.certificateError.unknown_ca:
 | |
|     return tls.Alert.Description.unknown_ca;
 | |
|   default:
 | |
|     return tls.Alert.Description.bad_certificate;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Maps a tls.Alert.Description to a pki.certificateError.
 | |
|  *
 | |
|  * @param desc the alert description.
 | |
|  *
 | |
|  * @return the certificate error.
 | |
|  */
 | |
| var _alertDescToCertError = function(desc) {
 | |
|   switch(desc) {
 | |
|   case true:
 | |
|     return true;
 | |
|   case tls.Alert.Description.bad_certificate:
 | |
|     return forge.pki.certificateError.bad_certificate;
 | |
|   case tls.Alert.Description.unsupported_certificate:
 | |
|     return forge.pki.certificateError.unsupported_certificate;
 | |
|   case tls.Alert.Description.certificate_revoked:
 | |
|     return forge.pki.certificateError.certificate_revoked;
 | |
|   case tls.Alert.Description.certificate_expired:
 | |
|     return forge.pki.certificateError.certificate_expired;
 | |
|   case tls.Alert.Description.certificate_unknown:
 | |
|     return forge.pki.certificateError.certificate_unknown;
 | |
|   case tls.Alert.Description.unknown_ca:
 | |
|     return forge.pki.certificateError.unknown_ca;
 | |
|   default:
 | |
|     return forge.pki.certificateError.bad_certificate;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Verifies a certificate chain against the given connection's
 | |
|  * Certificate Authority store.
 | |
|  *
 | |
|  * @param c the TLS connection.
 | |
|  * @param chain the certificate chain to verify, with the root or highest
 | |
|  *          authority at the end.
 | |
|  *
 | |
|  * @return true if successful, false if not.
 | |
|  */
 | |
| tls.verifyCertificateChain = function(c, chain) {
 | |
|   try {
 | |
|     // Make a copy of c.verifyOptions so that we can modify options.verify
 | |
|     // without modifying c.verifyOptions.
 | |
|     var options = {};
 | |
|     for (var key in c.verifyOptions) {
 | |
|       options[key] = c.verifyOptions[key];
 | |
|     }
 | |
| 
 | |
|     options.verify = function(vfd, depth, chain) {
 | |
|       // convert pki.certificateError to tls alert description
 | |
|       var desc = _certErrorToAlertDesc(vfd);
 | |
| 
 | |
|       // call application callback
 | |
|       var ret = c.verify(c, vfd, depth, chain);
 | |
|       if(ret !== true) {
 | |
|         if(typeof ret === 'object' && !forge.util.isArray(ret)) {
 | |
|           // throw custom error
 | |
|           var error = new Error('The application rejected the certificate.');
 | |
|           error.send = true;
 | |
|           error.alert = {
 | |
|             level: tls.Alert.Level.fatal,
 | |
|             description: tls.Alert.Description.bad_certificate
 | |
|           };
 | |
|           if(ret.message) {
 | |
|             error.message = ret.message;
 | |
|           }
 | |
|           if(ret.alert) {
 | |
|             error.alert.description = ret.alert;
 | |
|           }
 | |
|           throw error;
 | |
|         }
 | |
| 
 | |
|         // convert tls alert description to pki.certificateError
 | |
|         if(ret !== vfd) {
 | |
|           ret = _alertDescToCertError(ret);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       return ret;
 | |
|     };
 | |
| 
 | |
|     // verify chain
 | |
|     forge.pki.verifyCertificateChain(c.caStore, chain, options);
 | |
|   } catch(ex) {
 | |
|     // build tls error if not already customized
 | |
|     var err = ex;
 | |
|     if(typeof err !== 'object' || forge.util.isArray(err)) {
 | |
|       err = {
 | |
|         send: true,
 | |
|         alert: {
 | |
|           level: tls.Alert.Level.fatal,
 | |
|           description: _certErrorToAlertDesc(ex)
 | |
|         }
 | |
|       };
 | |
|     }
 | |
|     if(!('send' in err)) {
 | |
|       err.send = true;
 | |
|     }
 | |
|     if(!('alert' in err)) {
 | |
|       err.alert = {
 | |
|         level: tls.Alert.Level.fatal,
 | |
|         description: _certErrorToAlertDesc(err.error)
 | |
|       };
 | |
|     }
 | |
| 
 | |
|     // send error
 | |
|     c.error(c, err);
 | |
|   }
 | |
| 
 | |
|   return !c.fail;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Creates a new TLS session cache.
 | |
|  *
 | |
|  * @param cache optional map of session ID to cached session.
 | |
|  * @param capacity the maximum size for the cache (default: 100).
 | |
|  *
 | |
|  * @return the new TLS session cache.
 | |
|  */
 | |
| tls.createSessionCache = function(cache, capacity) {
 | |
|   var rval = null;
 | |
| 
 | |
|   // assume input is already a session cache object
 | |
|   if(cache && cache.getSession && cache.setSession && cache.order) {
 | |
|     rval = cache;
 | |
|   } else {
 | |
|     // create cache
 | |
|     rval = {};
 | |
|     rval.cache = cache || {};
 | |
|     rval.capacity = Math.max(capacity || 100, 1);
 | |
|     rval.order = [];
 | |
| 
 | |
|     // store order for sessions, delete session overflow
 | |
|     for(var key in cache) {
 | |
|       if(rval.order.length <= capacity) {
 | |
|         rval.order.push(key);
 | |
|       } else {
 | |
|         delete cache[key];
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // get a session from a session ID (or get any session)
 | |
|     rval.getSession = function(sessionId) {
 | |
|       var session = null;
 | |
|       var key = null;
 | |
| 
 | |
|       // if session ID provided, use it
 | |
|       if(sessionId) {
 | |
|         key = forge.util.bytesToHex(sessionId);
 | |
|       } else if(rval.order.length > 0) {
 | |
|         // get first session from cache
 | |
|         key = rval.order[0];
 | |
|       }
 | |
| 
 | |
|       if(key !== null && key in rval.cache) {
 | |
|         // get cached session and remove from cache
 | |
|         session = rval.cache[key];
 | |
|         delete rval.cache[key];
 | |
|         for(var i in rval.order) {
 | |
|           if(rval.order[i] === key) {
 | |
|             rval.order.splice(i, 1);
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       return session;
 | |
|     };
 | |
| 
 | |
|     // set a session in the cache
 | |
|     rval.setSession = function(sessionId, session) {
 | |
|       // remove session from cache if at capacity
 | |
|       if(rval.order.length === rval.capacity) {
 | |
|         var key = rval.order.shift();
 | |
|         delete rval.cache[key];
 | |
|       }
 | |
|       // add session to cache
 | |
|       var key = forge.util.bytesToHex(sessionId);
 | |
|       rval.order.push(key);
 | |
|       rval.cache[key] = session;
 | |
|     };
 | |
|   }
 | |
| 
 | |
|   return rval;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Creates a new TLS connection.
 | |
|  *
 | |
|  * See public createConnection() docs for more details.
 | |
|  *
 | |
|  * @param options the options for this connection.
 | |
|  *
 | |
|  * @return the new TLS connection.
 | |
|  */
 | |
| tls.createConnection = function(options) {
 | |
|   var caStore = null;
 | |
|   if(options.caStore) {
 | |
|     // if CA store is an array, convert it to a CA store object
 | |
|     if(forge.util.isArray(options.caStore)) {
 | |
|       caStore = forge.pki.createCaStore(options.caStore);
 | |
|     } else {
 | |
|       caStore = options.caStore;
 | |
|     }
 | |
|   } else {
 | |
|     // create empty CA store
 | |
|     caStore = forge.pki.createCaStore();
 | |
|   }
 | |
| 
 | |
|   // setup default cipher suites
 | |
|   var cipherSuites = options.cipherSuites || null;
 | |
|   if(cipherSuites === null) {
 | |
|     cipherSuites = [];
 | |
|     for(var key in tls.CipherSuites) {
 | |
|       cipherSuites.push(tls.CipherSuites[key]);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // set default entity
 | |
|   var entity = (options.server || false) ?
 | |
|     tls.ConnectionEnd.server : tls.ConnectionEnd.client;
 | |
| 
 | |
|   // create session cache if requested
 | |
|   var sessionCache = options.sessionCache ?
 | |
|     tls.createSessionCache(options.sessionCache) : null;
 | |
| 
 | |
|   // create TLS connection
 | |
|   var c = {
 | |
|     version: {major: tls.Version.major, minor: tls.Version.minor},
 | |
|     entity: entity,
 | |
|     sessionId: options.sessionId,
 | |
|     caStore: caStore,
 | |
|     sessionCache: sessionCache,
 | |
|     cipherSuites: cipherSuites,
 | |
|     connected: options.connected,
 | |
|     virtualHost: options.virtualHost || null,
 | |
|     verifyClient: options.verifyClient || false,
 | |
|     verify: options.verify || function(cn, vfd, dpth, cts) {return vfd;},
 | |
|     verifyOptions: options.verifyOptions || {},
 | |
|     getCertificate: options.getCertificate || null,
 | |
|     getPrivateKey: options.getPrivateKey || null,
 | |
|     getSignature: options.getSignature || null,
 | |
|     input: forge.util.createBuffer(),
 | |
|     tlsData: forge.util.createBuffer(),
 | |
|     data: forge.util.createBuffer(),
 | |
|     tlsDataReady: options.tlsDataReady,
 | |
|     dataReady: options.dataReady,
 | |
|     heartbeatReceived: options.heartbeatReceived,
 | |
|     closed: options.closed,
 | |
|     error: function(c, ex) {
 | |
|       // set origin if not set
 | |
|       ex.origin = ex.origin ||
 | |
|         ((c.entity === tls.ConnectionEnd.client) ? 'client' : 'server');
 | |
| 
 | |
|       // send TLS alert
 | |
|       if(ex.send) {
 | |
|         tls.queue(c, tls.createAlert(c, ex.alert));
 | |
|         tls.flush(c);
 | |
|       }
 | |
| 
 | |
|       // error is fatal by default
 | |
|       var fatal = (ex.fatal !== false);
 | |
|       if(fatal) {
 | |
|         // set fail flag
 | |
|         c.fail = true;
 | |
|       }
 | |
| 
 | |
|       // call error handler first
 | |
|       options.error(c, ex);
 | |
| 
 | |
|       if(fatal) {
 | |
|         // fatal error, close connection, do not clear fail
 | |
|         c.close(false);
 | |
|       }
 | |
|     },
 | |
|     deflate: options.deflate || null,
 | |
|     inflate: options.inflate || null
 | |
|   };
 | |
| 
 | |
|   /**
 | |
|    * Resets a closed TLS connection for reuse. Called in c.close().
 | |
|    *
 | |
|    * @param clearFail true to clear the fail flag (default: true).
 | |
|    */
 | |
|   c.reset = function(clearFail) {
 | |
|     c.version = {major: tls.Version.major, minor: tls.Version.minor};
 | |
|     c.record = null;
 | |
|     c.session = null;
 | |
|     c.peerCertificate = null;
 | |
|     c.state = {
 | |
|       pending: null,
 | |
|       current: null
 | |
|     };
 | |
|     c.expect = (c.entity === tls.ConnectionEnd.client) ? SHE : CHE;
 | |
|     c.fragmented = null;
 | |
|     c.records = [];
 | |
|     c.open = false;
 | |
|     c.handshakes = 0;
 | |
|     c.handshaking = false;
 | |
|     c.isConnected = false;
 | |
|     c.fail = !(clearFail || typeof(clearFail) === 'undefined');
 | |
|     c.input.clear();
 | |
|     c.tlsData.clear();
 | |
|     c.data.clear();
 | |
|     c.state.current = tls.createConnectionState(c);
 | |
|   };
 | |
| 
 | |
|   // do initial reset of connection
 | |
|   c.reset();
 | |
| 
 | |
|   /**
 | |
|    * Updates the current TLS engine state based on the given record.
 | |
|    *
 | |
|    * @param c the TLS connection.
 | |
|    * @param record the TLS record to act on.
 | |
|    */
 | |
|   var _update = function(c, record) {
 | |
|     // get record handler (align type in table by subtracting lowest)
 | |
|     var aligned = record.type - tls.ContentType.change_cipher_spec;
 | |
|     var handlers = ctTable[c.entity][c.expect];
 | |
|     if(aligned in handlers) {
 | |
|       handlers[aligned](c, record);
 | |
|     } else {
 | |
|       // unexpected record
 | |
|       tls.handleUnexpected(c, record);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /**
 | |
|    * Reads the record header and initializes the next record on the given
 | |
|    * connection.
 | |
|    *
 | |
|    * @param c the TLS connection with the next record.
 | |
|    *
 | |
|    * @return 0 if the input data could be processed, otherwise the
 | |
|    *         number of bytes required for data to be processed.
 | |
|    */
 | |
|   var _readRecordHeader = function(c) {
 | |
|     var rval = 0;
 | |
| 
 | |
|     // get input buffer and its length
 | |
|     var b = c.input;
 | |
|     var len = b.length();
 | |
| 
 | |
|     // need at least 5 bytes to initialize a record
 | |
|     if(len < 5) {
 | |
|       rval = 5 - len;
 | |
|     } else {
 | |
|       // enough bytes for header
 | |
|       // initialize record
 | |
|       c.record = {
 | |
|         type: b.getByte(),
 | |
|         version: {
 | |
|           major: b.getByte(),
 | |
|           minor: b.getByte()
 | |
|         },
 | |
|         length: b.getInt16(),
 | |
|         fragment: forge.util.createBuffer(),
 | |
|         ready: false
 | |
|       };
 | |
| 
 | |
|       // check record version
 | |
|       var compatibleVersion = (c.record.version.major === c.version.major);
 | |
|       if(compatibleVersion && c.session && c.session.version) {
 | |
|         // session version already set, require same minor version
 | |
|         compatibleVersion = (c.record.version.minor === c.version.minor);
 | |
|       }
 | |
|       if(!compatibleVersion) {
 | |
|         c.error(c, {
 | |
|           message: 'Incompatible TLS version.',
 | |
|           send: true,
 | |
|           alert: {
 | |
|             level: tls.Alert.Level.fatal,
 | |
|             description: tls.Alert.Description.protocol_version
 | |
|           }
 | |
|         });
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return rval;
 | |
|   };
 | |
| 
 | |
|   /**
 | |
|    * Reads the next record's contents and appends its message to any
 | |
|    * previously fragmented message.
 | |
|    *
 | |
|    * @param c the TLS connection with the next record.
 | |
|    *
 | |
|    * @return 0 if the input data could be processed, otherwise the
 | |
|    *         number of bytes required for data to be processed.
 | |
|    */
 | |
|   var _readRecord = function(c) {
 | |
|     var rval = 0;
 | |
| 
 | |
|     // ensure there is enough input data to get the entire record
 | |
|     var b = c.input;
 | |
|     var len = b.length();
 | |
|     if(len < c.record.length) {
 | |
|       // not enough data yet, return how much is required
 | |
|       rval = c.record.length - len;
 | |
|     } else {
 | |
|       // there is enough data to parse the pending record
 | |
|       // fill record fragment and compact input buffer
 | |
|       c.record.fragment.putBytes(b.getBytes(c.record.length));
 | |
|       b.compact();
 | |
| 
 | |
|       // update record using current read state
 | |
|       var s = c.state.current.read;
 | |
|       if(s.update(c, c.record)) {
 | |
|         // see if there is a previously fragmented message that the
 | |
|         // new record's message fragment should be appended to
 | |
|         if(c.fragmented !== null) {
 | |
|           // if the record type matches a previously fragmented
 | |
|           // record, append the record fragment to it
 | |
|           if(c.fragmented.type === c.record.type) {
 | |
|             // concatenate record fragments
 | |
|             c.fragmented.fragment.putBuffer(c.record.fragment);
 | |
|             c.record = c.fragmented;
 | |
|           } else {
 | |
|             // error, invalid fragmented record
 | |
|             c.error(c, {
 | |
|               message: 'Invalid fragmented record.',
 | |
|               send: true,
 | |
|               alert: {
 | |
|                 level: tls.Alert.Level.fatal,
 | |
|                 description:
 | |
|                   tls.Alert.Description.unexpected_message
 | |
|               }
 | |
|             });
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // record is now ready
 | |
|         c.record.ready = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return rval;
 | |
|   };
 | |
| 
 | |
|   /**
 | |
|    * Performs a handshake using the TLS Handshake Protocol, as a client.
 | |
|    *
 | |
|    * This method should only be called if the connection is in client mode.
 | |
|    *
 | |
|    * @param sessionId the session ID to use, null to start a new one.
 | |
|    */
 | |
|   c.handshake = function(sessionId) {
 | |
|     // error to call this in non-client mode
 | |
|     if(c.entity !== tls.ConnectionEnd.client) {
 | |
|       // not fatal error
 | |
|       c.error(c, {
 | |
|         message: 'Cannot initiate handshake as a server.',
 | |
|         fatal: false
 | |
|       });
 | |
|     } else if(c.handshaking) {
 | |
|       // handshake is already in progress, fail but not fatal error
 | |
|       c.error(c, {
 | |
|         message: 'Handshake already in progress.',
 | |
|         fatal: false
 | |
|       });
 | |
|     } else {
 | |
|       // clear fail flag on reuse
 | |
|       if(c.fail && !c.open && c.handshakes === 0) {
 | |
|         c.fail = false;
 | |
|       }
 | |
| 
 | |
|       // now handshaking
 | |
|       c.handshaking = true;
 | |
| 
 | |
|       // default to blank (new session)
 | |
|       sessionId = sessionId || '';
 | |
| 
 | |
|       // if a session ID was specified, try to find it in the cache
 | |
|       var session = null;
 | |
|       if(sessionId.length > 0) {
 | |
|         if(c.sessionCache) {
 | |
|           session = c.sessionCache.getSession(sessionId);
 | |
|         }
 | |
| 
 | |
|         // matching session not found in cache, clear session ID
 | |
|         if(session === null) {
 | |
|           sessionId = '';
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // no session given, grab a session from the cache, if available
 | |
|       if(sessionId.length === 0 && c.sessionCache) {
 | |
|         session = c.sessionCache.getSession();
 | |
|         if(session !== null) {
 | |
|           sessionId = session.id;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // set up session
 | |
|       c.session = {
 | |
|         id: sessionId,
 | |
|         version: null,
 | |
|         cipherSuite: null,
 | |
|         compressionMethod: null,
 | |
|         serverCertificate: null,
 | |
|         certificateRequest: null,
 | |
|         clientCertificate: null,
 | |
|         sp: {},
 | |
|         md5: forge.md.md5.create(),
 | |
|         sha1: forge.md.sha1.create()
 | |
|       };
 | |
| 
 | |
|       // use existing session information
 | |
|       if(session) {
 | |
|         // only update version on connection, session version not yet set
 | |
|         c.version = session.version;
 | |
|         c.session.sp = session.sp;
 | |
|       }
 | |
| 
 | |
|       // generate new client random
 | |
|       c.session.sp.client_random = tls.createRandom().getBytes();
 | |
| 
 | |
|       // connection now open
 | |
|       c.open = true;
 | |
| 
 | |
|       // send hello
 | |
|       tls.queue(c, tls.createRecord(c, {
 | |
|         type: tls.ContentType.handshake,
 | |
|         data: tls.createClientHello(c)
 | |
|       }));
 | |
|       tls.flush(c);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /**
 | |
|    * Called when TLS protocol data has been received from somewhere and should
 | |
|    * be processed by the TLS engine.
 | |
|    *
 | |
|    * @param data the TLS protocol data, as a string, to process.
 | |
|    *
 | |
|    * @return 0 if the data could be processed, otherwise the number of bytes
 | |
|    *         required for data to be processed.
 | |
|    */
 | |
|   c.process = function(data) {
 | |
|     var rval = 0;
 | |
| 
 | |
|     // buffer input data
 | |
|     if(data) {
 | |
|       c.input.putBytes(data);
 | |
|     }
 | |
| 
 | |
|     // process next record if no failure, process will be called after
 | |
|     // each record is handled (since handling can be asynchronous)
 | |
|     if(!c.fail) {
 | |
|       // reset record if ready and now empty
 | |
|       if(c.record !== null &&
 | |
|         c.record.ready && c.record.fragment.isEmpty()) {
 | |
|         c.record = null;
 | |
|       }
 | |
| 
 | |
|       // if there is no pending record, try to read record header
 | |
|       if(c.record === null) {
 | |
|         rval = _readRecordHeader(c);
 | |
|       }
 | |
| 
 | |
|       // read the next record (if record not yet ready)
 | |
|       if(!c.fail && c.record !== null && !c.record.ready) {
 | |
|         rval = _readRecord(c);
 | |
|       }
 | |
| 
 | |
|       // record ready to be handled, update engine state
 | |
|       if(!c.fail && c.record !== null && c.record.ready) {
 | |
|         _update(c, c.record);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return rval;
 | |
|   };
 | |
| 
 | |
|   /**
 | |
|    * Requests that application data be packaged into a TLS record. The
 | |
|    * tlsDataReady handler will be called when the TLS record(s) have been
 | |
|    * prepared.
 | |
|    *
 | |
|    * @param data the application data, as a raw 'binary' encoded string, to
 | |
|    *          be sent; to send utf-16/utf-8 string data, use the return value
 | |
|    *          of util.encodeUtf8(str).
 | |
|    *
 | |
|    * @return true on success, false on failure.
 | |
|    */
 | |
|   c.prepare = function(data) {
 | |
|     tls.queue(c, tls.createRecord(c, {
 | |
|       type: tls.ContentType.application_data,
 | |
|       data: forge.util.createBuffer(data)
 | |
|     }));
 | |
|     return tls.flush(c);
 | |
|   };
 | |
| 
 | |
|   /**
 | |
|    * Requests that a heartbeat request be packaged into a TLS record for
 | |
|    * transmission. The tlsDataReady handler will be called when TLS record(s)
 | |
|    * have been prepared.
 | |
|    *
 | |
|    * When a heartbeat response has been received, the heartbeatReceived
 | |
|    * handler will be called with the matching payload. This handler can
 | |
|    * be used to clear a retransmission timer, etc.
 | |
|    *
 | |
|    * @param payload the heartbeat data to send as the payload in the message.
 | |
|    * @param [payloadLength] the payload length to use, defaults to the
 | |
|    *          actual payload length.
 | |
|    *
 | |
|    * @return true on success, false on failure.
 | |
|    */
 | |
|   c.prepareHeartbeatRequest = function(payload, payloadLength) {
 | |
|     if(payload instanceof forge.util.ByteBuffer) {
 | |
|       payload = payload.bytes();
 | |
|     }
 | |
|     if(typeof payloadLength === 'undefined') {
 | |
|       payloadLength = payload.length;
 | |
|     }
 | |
|     c.expectedHeartbeatPayload = payload;
 | |
|     tls.queue(c, tls.createRecord(c, {
 | |
|       type: tls.ContentType.heartbeat,
 | |
|       data: tls.createHeartbeat(
 | |
|         tls.HeartbeatMessageType.heartbeat_request, payload, payloadLength)
 | |
|     }));
 | |
|     return tls.flush(c);
 | |
|   };
 | |
| 
 | |
|   /**
 | |
|    * Closes the connection (sends a close_notify alert).
 | |
|    *
 | |
|    * @param clearFail true to clear the fail flag (default: true).
 | |
|    */
 | |
|   c.close = function(clearFail) {
 | |
|     // save session if connection didn't fail
 | |
|     if(!c.fail && c.sessionCache && c.session) {
 | |
|       // only need to preserve session ID, version, and security params
 | |
|       var session = {
 | |
|         id: c.session.id,
 | |
|         version: c.session.version,
 | |
|         sp: c.session.sp
 | |
|       };
 | |
|       session.sp.keys = null;
 | |
|       c.sessionCache.setSession(session.id, session);
 | |
|     }
 | |
| 
 | |
|     if(c.open) {
 | |
|       // connection no longer open, clear input
 | |
|       c.open = false;
 | |
|       c.input.clear();
 | |
| 
 | |
|       // if connected or handshaking, send an alert
 | |
|       if(c.isConnected || c.handshaking) {
 | |
|         c.isConnected = c.handshaking = false;
 | |
| 
 | |
|         // send close_notify alert
 | |
|         tls.queue(c, tls.createAlert(c, {
 | |
|           level: tls.Alert.Level.warning,
 | |
|           description: tls.Alert.Description.close_notify
 | |
|         }));
 | |
|         tls.flush(c);
 | |
|       }
 | |
| 
 | |
|       // call handler
 | |
|       c.closed(c);
 | |
|     }
 | |
| 
 | |
|     // reset TLS connection, do not clear fail flag
 | |
|     c.reset(clearFail);
 | |
|   };
 | |
| 
 | |
|   return c;
 | |
| };
 | |
| 
 | |
| /* TLS API */
 | |
| module.exports = forge.tls = forge.tls || {};
 | |
| 
 | |
| // expose non-functions
 | |
| for(var key in tls) {
 | |
|   if(typeof tls[key] !== 'function') {
 | |
|     forge.tls[key] = tls[key];
 | |
|   }
 | |
| }
 | |
| 
 | |
| // expose prf_tls1 for testing
 | |
| forge.tls.prf_tls1 = prf_TLS1;
 | |
| 
 | |
| // expose sha1 hmac method
 | |
| forge.tls.hmac_sha1 = hmac_sha1;
 | |
| 
 | |
| // expose session cache creation
 | |
| forge.tls.createSessionCache = tls.createSessionCache;
 | |
| 
 | |
| /**
 | |
|  * Creates a new TLS connection. This does not make any assumptions about the
 | |
|  * transport layer that TLS is working on top of, ie: it does not assume there
 | |
|  * is a TCP/IP connection or establish one. A TLS connection is totally
 | |
|  * abstracted away from the layer is runs on top of, it merely establishes a
 | |
|  * secure channel between a client" and a "server".
 | |
|  *
 | |
|  * A TLS connection contains 4 connection states: pending read and write, and
 | |
|  * current read and write.
 | |
|  *
 | |
|  * At initialization, the current read and write states will be null. Only once
 | |
|  * the security parameters have been set and the keys have been generated can
 | |
|  * the pending states be converted into current states. Current states will be
 | |
|  * updated for each record processed.
 | |
|  *
 | |
|  * A custom certificate verify callback may be provided to check information
 | |
|  * like the common name on the server's certificate. It will be called for
 | |
|  * every certificate in the chain. It has the following signature:
 | |
|  *
 | |
|  * variable func(c, certs, index, preVerify)
 | |
|  * Where:
 | |
|  * c         The TLS connection
 | |
|  * verified  Set to true if certificate was verified, otherwise the alert
 | |
|  *           tls.Alert.Description for why the certificate failed.
 | |
|  * depth     The current index in the chain, where 0 is the server's cert.
 | |
|  * certs     The certificate chain, *NOTE* if the server was anonymous then
 | |
|  *           the chain will be empty.
 | |
|  *
 | |
|  * The function returns true on success and on failure either the appropriate
 | |
|  * tls.Alert.Description or an object with 'alert' set to the appropriate
 | |
|  * tls.Alert.Description and 'message' set to a custom error message. If true
 | |
|  * is not returned then the connection will abort using, in order of
 | |
|  * availability, first the returned alert description, second the preVerify
 | |
|  * alert description, and lastly the default 'bad_certificate'.
 | |
|  *
 | |
|  * There are three callbacks that can be used to make use of client-side
 | |
|  * certificates where each takes the TLS connection as the first parameter:
 | |
|  *
 | |
|  * getCertificate(conn, hint)
 | |
|  *   The second parameter is a hint as to which certificate should be
 | |
|  *   returned. If the connection entity is a client, then the hint will be
 | |
|  *   the CertificateRequest message from the server that is part of the
 | |
|  *   TLS protocol. If the connection entity is a server, then it will be
 | |
|  *   the servername list provided via an SNI extension the ClientHello, if
 | |
|  *   one was provided (empty array if not). The hint can be examined to
 | |
|  *   determine which certificate to use (advanced). Most implementations
 | |
|  *   will just return a certificate. The return value must be a
 | |
|  *   PEM-formatted certificate or an array of PEM-formatted certificates
 | |
|  *   that constitute a certificate chain, with the first in the array/chain
 | |
|  *   being the client's certificate.
 | |
|  * getPrivateKey(conn, certificate)
 | |
|  *   The second parameter is an forge.pki X.509 certificate object that
 | |
|  *   is associated with the requested private key. The return value must
 | |
|  *   be a PEM-formatted private key.
 | |
|  * getSignature(conn, bytes, callback)
 | |
|  *   This callback can be used instead of getPrivateKey if the private key
 | |
|  *   is not directly accessible in javascript or should not be. For
 | |
|  *   instance, a secure external web service could provide the signature
 | |
|  *   in exchange for appropriate credentials. The second parameter is a
 | |
|  *   string of bytes to be signed that are part of the TLS protocol. These
 | |
|  *   bytes are used to verify that the private key for the previously
 | |
|  *   provided client-side certificate is accessible to the client. The
 | |
|  *   callback is a function that takes 2 parameters, the TLS connection
 | |
|  *   and the RSA encrypted (signed) bytes as a string. This callback must
 | |
|  *   be called once the signature is ready.
 | |
|  *
 | |
|  * @param options the options for this connection:
 | |
|  *   server: true if the connection is server-side, false for client.
 | |
|  *   sessionId: a session ID to reuse, null for a new connection.
 | |
|  *   caStore: an array of certificates to trust.
 | |
|  *   sessionCache: a session cache to use.
 | |
|  *   cipherSuites: an optional array of cipher suites to use,
 | |
|  *     see tls.CipherSuites.
 | |
|  *   connected: function(conn) called when the first handshake completes.
 | |
|  *   virtualHost: the virtual server name to use in a TLS SNI extension.
 | |
|  *   verifyClient: true to require a client certificate in server mode,
 | |
|  *     'optional' to request one, false not to (default: false).
 | |
|  *   verify: a handler used to custom verify certificates in the chain.
 | |
|  *   verifyOptions: an object with options for the certificate chain validation.
 | |
|  *     See documentation of pki.verifyCertificateChain for possible options.
 | |
|  *     verifyOptions.verify is ignored. If you wish to specify a verify handler
 | |
|  *     use the verify key.
 | |
|  *   getCertificate: an optional callback used to get a certificate or
 | |
|  *     a chain of certificates (as an array).
 | |
|  *   getPrivateKey: an optional callback used to get a private key.
 | |
|  *   getSignature: an optional callback used to get a signature.
 | |
|  *   tlsDataReady: function(conn) called when TLS protocol data has been
 | |
|  *     prepared and is ready to be used (typically sent over a socket
 | |
|  *     connection to its destination), read from conn.tlsData buffer.
 | |
|  *   dataReady: function(conn) called when application data has
 | |
|  *     been parsed from a TLS record and should be consumed by the
 | |
|  *     application, read from conn.data buffer.
 | |
|  *   closed: function(conn) called when the connection has been closed.
 | |
|  *   error: function(conn, error) called when there was an error.
 | |
|  *   deflate: function(inBytes) if provided, will deflate TLS records using
 | |
|  *     the deflate algorithm if the server supports it.
 | |
|  *   inflate: function(inBytes) if provided, will inflate TLS records using
 | |
|  *     the deflate algorithm if the server supports it.
 | |
|  *
 | |
|  * @return the new TLS connection.
 | |
|  */
 | |
| forge.tls.createConnection = tls.createConnection;
 |