169 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			169 lines
		
	
	
		
			4.7 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
/**
 | 
						|
 * RSA Key Generation Worker.
 | 
						|
 *
 | 
						|
 * @author Dave Longley
 | 
						|
 *
 | 
						|
 * Copyright (c) 2013 Digital Bazaar, Inc.
 | 
						|
 */
 | 
						|
// worker is built using CommonJS syntax to include all code in one worker file
 | 
						|
//importScripts('jsbn.js');
 | 
						|
var forge = require('./forge');
 | 
						|
require('./jsbn');
 | 
						|
 | 
						|
// prime constants
 | 
						|
var LOW_PRIMES = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997];
 | 
						|
var LP_LIMIT = (1 << 26) / LOW_PRIMES[LOW_PRIMES.length - 1];
 | 
						|
 | 
						|
var BigInteger = forge.jsbn.BigInteger;
 | 
						|
var BIG_TWO = new BigInteger(null);
 | 
						|
BIG_TWO.fromInt(2);
 | 
						|
 | 
						|
self.addEventListener('message', function(e) {
 | 
						|
  var result = findPrime(e.data);
 | 
						|
  self.postMessage(result);
 | 
						|
});
 | 
						|
 | 
						|
// start receiving ranges to check
 | 
						|
self.postMessage({found: false});
 | 
						|
 | 
						|
// primes are 30k+i for i = 1, 7, 11, 13, 17, 19, 23, 29
 | 
						|
var GCD_30_DELTA = [6, 4, 2, 4, 2, 4, 6, 2];
 | 
						|
 | 
						|
function findPrime(data) {
 | 
						|
  // TODO: abstract based on data.algorithm (PRIMEINC vs. others)
 | 
						|
 | 
						|
  // create BigInteger from given random bytes
 | 
						|
  var num = new BigInteger(data.hex, 16);
 | 
						|
 | 
						|
  /* Note: All primes are of the form 30k+i for i < 30 and gcd(30, i)=1. The
 | 
						|
    number we are given is always aligned at 30k + 1. Each time the number is
 | 
						|
    determined not to be prime we add to get to the next 'i', eg: if the number
 | 
						|
    was at 30k + 1 we add 6. */
 | 
						|
  var deltaIdx = 0;
 | 
						|
 | 
						|
  // find nearest prime
 | 
						|
  var workLoad = data.workLoad;
 | 
						|
  for(var i = 0; i < workLoad; ++i) {
 | 
						|
    // do primality test
 | 
						|
    if(isProbablePrime(num)) {
 | 
						|
      return {found: true, prime: num.toString(16)};
 | 
						|
    }
 | 
						|
    // get next potential prime
 | 
						|
    num.dAddOffset(GCD_30_DELTA[deltaIdx++ % 8], 0);
 | 
						|
  }
 | 
						|
 | 
						|
  return {found: false};
 | 
						|
}
 | 
						|
 | 
						|
function isProbablePrime(n) {
 | 
						|
  // divide by low primes, ignore even checks, etc (n alread aligned properly)
 | 
						|
  var i = 1;
 | 
						|
  while(i < LOW_PRIMES.length) {
 | 
						|
    var m = LOW_PRIMES[i];
 | 
						|
    var j = i + 1;
 | 
						|
    while(j < LOW_PRIMES.length && m < LP_LIMIT) {
 | 
						|
      m *= LOW_PRIMES[j++];
 | 
						|
    }
 | 
						|
    m = n.modInt(m);
 | 
						|
    while(i < j) {
 | 
						|
      if(m % LOW_PRIMES[i++] === 0) {
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return runMillerRabin(n);
 | 
						|
}
 | 
						|
 | 
						|
// HAC 4.24, Miller-Rabin
 | 
						|
function runMillerRabin(n) {
 | 
						|
  // n1 = n - 1
 | 
						|
  var n1 = n.subtract(BigInteger.ONE);
 | 
						|
 | 
						|
  // get s and d such that n1 = 2^s * d
 | 
						|
  var s = n1.getLowestSetBit();
 | 
						|
  if(s <= 0) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  var d = n1.shiftRight(s);
 | 
						|
 | 
						|
  var k = _getMillerRabinTests(n.bitLength());
 | 
						|
  var prng = getPrng();
 | 
						|
  var a;
 | 
						|
  for(var i = 0; i < k; ++i) {
 | 
						|
    // select witness 'a' at random from between 1 and n - 1
 | 
						|
    do {
 | 
						|
      a = new BigInteger(n.bitLength(), prng);
 | 
						|
    } while(a.compareTo(BigInteger.ONE) <= 0 || a.compareTo(n1) >= 0);
 | 
						|
 | 
						|
    /* See if 'a' is a composite witness. */
 | 
						|
 | 
						|
    // x = a^d mod n
 | 
						|
    var x = a.modPow(d, n);
 | 
						|
 | 
						|
    // probably prime
 | 
						|
    if(x.compareTo(BigInteger.ONE) === 0 || x.compareTo(n1) === 0) {
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    var j = s;
 | 
						|
    while(--j) {
 | 
						|
      // x = x^2 mod a
 | 
						|
      x = x.modPowInt(2, n);
 | 
						|
 | 
						|
      // 'n' is composite because no previous x == -1 mod n
 | 
						|
      if(x.compareTo(BigInteger.ONE) === 0) {
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      // x == -1 mod n, so probably prime
 | 
						|
      if(x.compareTo(n1) === 0) {
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // 'x' is first_x^(n1/2) and is not +/- 1, so 'n' is not prime
 | 
						|
    if(j === 0) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// get pseudo random number generator
 | 
						|
function getPrng() {
 | 
						|
  // create prng with api that matches BigInteger secure random
 | 
						|
  return {
 | 
						|
    // x is an array to fill with bytes
 | 
						|
    nextBytes: function(x) {
 | 
						|
      for(var i = 0; i < x.length; ++i) {
 | 
						|
        x[i] = Math.floor(Math.random() * 0xFF);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Returns the required number of Miller-Rabin tests to generate a
 | 
						|
 * prime with an error probability of (1/2)^80.
 | 
						|
 *
 | 
						|
 * See Handbook of Applied Cryptography Chapter 4, Table 4.4.
 | 
						|
 *
 | 
						|
 * @param bits the bit size.
 | 
						|
 *
 | 
						|
 * @return the required number of iterations.
 | 
						|
 */
 | 
						|
function _getMillerRabinTests(bits) {
 | 
						|
  if(bits <= 100) return 27;
 | 
						|
  if(bits <= 150) return 18;
 | 
						|
  if(bits <= 200) return 15;
 | 
						|
  if(bits <= 250) return 12;
 | 
						|
  if(bits <= 300) return 9;
 | 
						|
  if(bits <= 350) return 8;
 | 
						|
  if(bits <= 400) return 7;
 | 
						|
  if(bits <= 500) return 6;
 | 
						|
  if(bits <= 600) return 5;
 | 
						|
  if(bits <= 800) return 4;
 | 
						|
  if(bits <= 1250) return 3;
 | 
						|
  return 2;
 | 
						|
}
 |