892 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			892 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| /**
 | |
|  * @license Fraction.js v4.3.7 31/08/2023
 | |
|  * https://www.xarg.org/2014/03/rational-numbers-in-javascript/
 | |
|  *
 | |
|  * Copyright (c) 2023, Robert Eisele (robert@raw.org)
 | |
|  * Dual licensed under the MIT or GPL Version 2 licenses.
 | |
|  **/
 | |
| 
 | |
| 
 | |
| /**
 | |
|  *
 | |
|  * This class offers the possibility to calculate fractions.
 | |
|  * You can pass a fraction in different formats. Either as array, as double, as string or as an integer.
 | |
|  *
 | |
|  * Array/Object form
 | |
|  * [ 0 => <numerator>, 1 => <denominator> ]
 | |
|  * [ n => <numerator>, d => <denominator> ]
 | |
|  *
 | |
|  * Integer form
 | |
|  * - Single integer value
 | |
|  *
 | |
|  * Double form
 | |
|  * - Single double value
 | |
|  *
 | |
|  * String form
 | |
|  * 123.456 - a simple double
 | |
|  * 123/456 - a string fraction
 | |
|  * 123.'456' - a double with repeating decimal places
 | |
|  * 123.(456) - synonym
 | |
|  * 123.45'6' - a double with repeating last place
 | |
|  * 123.45(6) - synonym
 | |
|  *
 | |
|  * Example:
 | |
|  *
 | |
|  * var f = new Fraction("9.4'31'");
 | |
|  * f.mul([-4, 3]).div(4.9);
 | |
|  *
 | |
|  */
 | |
| 
 | |
| 
 | |
| // Maximum search depth for cyclic rational numbers. 2000 should be more than enough.
 | |
| // Example: 1/7 = 0.(142857) has 6 repeating decimal places.
 | |
| // If MAX_CYCLE_LEN gets reduced, long cycles will not be detected and toString() only gets the first 10 digits
 | |
| var MAX_CYCLE_LEN = 2000;
 | |
| 
 | |
| // Parsed data to avoid calling "new" all the time
 | |
| var P = {
 | |
|   "s": 1,
 | |
|   "n": 0,
 | |
|   "d": 1
 | |
| };
 | |
| 
 | |
| function assign(n, s) {
 | |
| 
 | |
|   if (isNaN(n = parseInt(n, 10))) {
 | |
|     throw InvalidParameter();
 | |
|   }
 | |
|   return n * s;
 | |
| }
 | |
| 
 | |
| // Creates a new Fraction internally without the need of the bulky constructor
 | |
| function newFraction(n, d) {
 | |
| 
 | |
|   if (d === 0) {
 | |
|     throw DivisionByZero();
 | |
|   }
 | |
| 
 | |
|   var f = Object.create(Fraction.prototype);
 | |
|   f["s"] = n < 0 ? -1 : 1;
 | |
| 
 | |
|   n = n < 0 ? -n : n;
 | |
| 
 | |
|   var a = gcd(n, d);
 | |
| 
 | |
|   f["n"] = n / a;
 | |
|   f["d"] = d / a;
 | |
|   return f;
 | |
| }
 | |
| 
 | |
| function factorize(num) {
 | |
| 
 | |
|   var factors = {};
 | |
| 
 | |
|   var n = num;
 | |
|   var i = 2;
 | |
|   var s = 4;
 | |
| 
 | |
|   while (s <= n) {
 | |
| 
 | |
|     while (n % i === 0) {
 | |
|       n/= i;
 | |
|       factors[i] = (factors[i] || 0) + 1;
 | |
|     }
 | |
|     s+= 1 + 2 * i++;
 | |
|   }
 | |
| 
 | |
|   if (n !== num) {
 | |
|     if (n > 1)
 | |
|       factors[n] = (factors[n] || 0) + 1;
 | |
|   } else {
 | |
|     factors[num] = (factors[num] || 0) + 1;
 | |
|   }
 | |
|   return factors;
 | |
| }
 | |
| 
 | |
| var parse = function(p1, p2) {
 | |
| 
 | |
|   var n = 0, d = 1, s = 1;
 | |
|   var v = 0, w = 0, x = 0, y = 1, z = 1;
 | |
| 
 | |
|   var A = 0, B = 1;
 | |
|   var C = 1, D = 1;
 | |
| 
 | |
|   var N = 10000000;
 | |
|   var M;
 | |
| 
 | |
|   if (p1 === undefined || p1 === null) {
 | |
|     /* void */
 | |
|   } else if (p2 !== undefined) {
 | |
|     n = p1;
 | |
|     d = p2;
 | |
|     s = n * d;
 | |
| 
 | |
|     if (n % 1 !== 0 || d % 1 !== 0) {
 | |
|       throw NonIntegerParameter();
 | |
|     }
 | |
| 
 | |
|   } else
 | |
|     switch (typeof p1) {
 | |
| 
 | |
|       case "object":
 | |
|         {
 | |
|           if ("d" in p1 && "n" in p1) {
 | |
|             n = p1["n"];
 | |
|             d = p1["d"];
 | |
|             if ("s" in p1)
 | |
|               n*= p1["s"];
 | |
|           } else if (0 in p1) {
 | |
|             n = p1[0];
 | |
|             if (1 in p1)
 | |
|               d = p1[1];
 | |
|           } else {
 | |
|             throw InvalidParameter();
 | |
|           }
 | |
|           s = n * d;
 | |
|           break;
 | |
|         }
 | |
|       case "number":
 | |
|         {
 | |
|           if (p1 < 0) {
 | |
|             s = p1;
 | |
|             p1 = -p1;
 | |
|           }
 | |
| 
 | |
|           if (p1 % 1 === 0) {
 | |
|             n = p1;
 | |
|           } else if (p1 > 0) { // check for != 0, scale would become NaN (log(0)), which converges really slow
 | |
| 
 | |
|             if (p1 >= 1) {
 | |
|               z = Math.pow(10, Math.floor(1 + Math.log(p1) / Math.LN10));
 | |
|               p1/= z;
 | |
|             }
 | |
| 
 | |
|             // Using Farey Sequences
 | |
|             // http://www.johndcook.com/blog/2010/10/20/best-rational-approximation/
 | |
| 
 | |
|             while (B <= N && D <= N) {
 | |
|               M = (A + C) / (B + D);
 | |
| 
 | |
|               if (p1 === M) {
 | |
|                 if (B + D <= N) {
 | |
|                   n = A + C;
 | |
|                   d = B + D;
 | |
|                 } else if (D > B) {
 | |
|                   n = C;
 | |
|                   d = D;
 | |
|                 } else {
 | |
|                   n = A;
 | |
|                   d = B;
 | |
|                 }
 | |
|                 break;
 | |
| 
 | |
|               } else {
 | |
| 
 | |
|                 if (p1 > M) {
 | |
|                   A+= C;
 | |
|                   B+= D;
 | |
|                 } else {
 | |
|                   C+= A;
 | |
|                   D+= B;
 | |
|                 }
 | |
| 
 | |
|                 if (B > N) {
 | |
|                   n = C;
 | |
|                   d = D;
 | |
|                 } else {
 | |
|                   n = A;
 | |
|                   d = B;
 | |
|                 }
 | |
|               }
 | |
|             }
 | |
|             n*= z;
 | |
|           } else if (isNaN(p1) || isNaN(p2)) {
 | |
|             d = n = NaN;
 | |
|           }
 | |
|           break;
 | |
|         }
 | |
|       case "string":
 | |
|         {
 | |
|           B = p1.match(/\d+|./g);
 | |
| 
 | |
|           if (B === null)
 | |
|             throw InvalidParameter();
 | |
| 
 | |
|           if (B[A] === '-') {// Check for minus sign at the beginning
 | |
|             s = -1;
 | |
|             A++;
 | |
|           } else if (B[A] === '+') {// Check for plus sign at the beginning
 | |
|             A++;
 | |
|           }
 | |
| 
 | |
|           if (B.length === A + 1) { // Check if it's just a simple number "1234"
 | |
|             w = assign(B[A++], s);
 | |
|           } else if (B[A + 1] === '.' || B[A] === '.') { // Check if it's a decimal number
 | |
| 
 | |
|             if (B[A] !== '.') { // Handle 0.5 and .5
 | |
|               v = assign(B[A++], s);
 | |
|             }
 | |
|             A++;
 | |
| 
 | |
|             // Check for decimal places
 | |
|             if (A + 1 === B.length || B[A + 1] === '(' && B[A + 3] === ')' || B[A + 1] === "'" && B[A + 3] === "'") {
 | |
|               w = assign(B[A], s);
 | |
|               y = Math.pow(10, B[A].length);
 | |
|               A++;
 | |
|             }
 | |
| 
 | |
|             // Check for repeating places
 | |
|             if (B[A] === '(' && B[A + 2] === ')' || B[A] === "'" && B[A + 2] === "'") {
 | |
|               x = assign(B[A + 1], s);
 | |
|               z = Math.pow(10, B[A + 1].length) - 1;
 | |
|               A+= 3;
 | |
|             }
 | |
| 
 | |
|           } else if (B[A + 1] === '/' || B[A + 1] === ':') { // Check for a simple fraction "123/456" or "123:456"
 | |
|             w = assign(B[A], s);
 | |
|             y = assign(B[A + 2], 1);
 | |
|             A+= 3;
 | |
|           } else if (B[A + 3] === '/' && B[A + 1] === ' ') { // Check for a complex fraction "123 1/2"
 | |
|             v = assign(B[A], s);
 | |
|             w = assign(B[A + 2], s);
 | |
|             y = assign(B[A + 4], 1);
 | |
|             A+= 5;
 | |
|           }
 | |
| 
 | |
|           if (B.length <= A) { // Check for more tokens on the stack
 | |
|             d = y * z;
 | |
|             s = /* void */
 | |
|             n = x + d * v + z * w;
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           /* Fall through on error */
 | |
|         }
 | |
|       default:
 | |
|         throw InvalidParameter();
 | |
|     }
 | |
| 
 | |
|   if (d === 0) {
 | |
|     throw DivisionByZero();
 | |
|   }
 | |
| 
 | |
|   P["s"] = s < 0 ? -1 : 1;
 | |
|   P["n"] = Math.abs(n);
 | |
|   P["d"] = Math.abs(d);
 | |
| };
 | |
| 
 | |
| function modpow(b, e, m) {
 | |
| 
 | |
|   var r = 1;
 | |
|   for (; e > 0; b = (b * b) % m, e >>= 1) {
 | |
| 
 | |
|     if (e & 1) {
 | |
|       r = (r * b) % m;
 | |
|     }
 | |
|   }
 | |
|   return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| function cycleLen(n, d) {
 | |
| 
 | |
|   for (; d % 2 === 0;
 | |
|     d/= 2) {
 | |
|   }
 | |
| 
 | |
|   for (; d % 5 === 0;
 | |
|     d/= 5) {
 | |
|   }
 | |
| 
 | |
|   if (d === 1) // Catch non-cyclic numbers
 | |
|     return 0;
 | |
| 
 | |
|   // If we would like to compute really large numbers quicker, we could make use of Fermat's little theorem:
 | |
|   // 10^(d-1) % d == 1
 | |
|   // However, we don't need such large numbers and MAX_CYCLE_LEN should be the capstone,
 | |
|   // as we want to translate the numbers to strings.
 | |
| 
 | |
|   var rem = 10 % d;
 | |
|   var t = 1;
 | |
| 
 | |
|   for (; rem !== 1; t++) {
 | |
|     rem = rem * 10 % d;
 | |
| 
 | |
|     if (t > MAX_CYCLE_LEN)
 | |
|       return 0; // Returning 0 here means that we don't print it as a cyclic number. It's likely that the answer is `d-1`
 | |
|   }
 | |
|   return t;
 | |
| }
 | |
| 
 | |
| 
 | |
| function cycleStart(n, d, len) {
 | |
| 
 | |
|   var rem1 = 1;
 | |
|   var rem2 = modpow(10, len, d);
 | |
| 
 | |
|   for (var t = 0; t < 300; t++) { // s < ~log10(Number.MAX_VALUE)
 | |
|     // Solve 10^s == 10^(s+t) (mod d)
 | |
| 
 | |
|     if (rem1 === rem2)
 | |
|       return t;
 | |
| 
 | |
|     rem1 = rem1 * 10 % d;
 | |
|     rem2 = rem2 * 10 % d;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| function gcd(a, b) {
 | |
| 
 | |
|   if (!a)
 | |
|     return b;
 | |
|   if (!b)
 | |
|     return a;
 | |
| 
 | |
|   while (1) {
 | |
|     a%= b;
 | |
|     if (!a)
 | |
|       return b;
 | |
|     b%= a;
 | |
|     if (!b)
 | |
|       return a;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Module constructor
 | |
|  *
 | |
|  * @constructor
 | |
|  * @param {number|Fraction=} a
 | |
|  * @param {number=} b
 | |
|  */
 | |
| export default function Fraction(a, b) {
 | |
| 
 | |
|   parse(a, b);
 | |
| 
 | |
|   if (this instanceof Fraction) {
 | |
|     a = gcd(P["d"], P["n"]); // Abuse variable a
 | |
|     this["s"] = P["s"];
 | |
|     this["n"] = P["n"] / a;
 | |
|     this["d"] = P["d"] / a;
 | |
|   } else {
 | |
|     return newFraction(P['s'] * P['n'], P['d']);
 | |
|   }
 | |
| }
 | |
| 
 | |
| var DivisionByZero = function() { return new Error("Division by Zero"); };
 | |
| var InvalidParameter = function() { return new Error("Invalid argument"); };
 | |
| var NonIntegerParameter = function() { return new Error("Parameters must be integer"); };
 | |
| 
 | |
| Fraction.prototype = {
 | |
| 
 | |
|   "s": 1,
 | |
|   "n": 0,
 | |
|   "d": 1,
 | |
| 
 | |
|   /**
 | |
|    * Calculates the absolute value
 | |
|    *
 | |
|    * Ex: new Fraction(-4).abs() => 4
 | |
|    **/
 | |
|   "abs": function() {
 | |
| 
 | |
|     return newFraction(this["n"], this["d"]);
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * Inverts the sign of the current fraction
 | |
|    *
 | |
|    * Ex: new Fraction(-4).neg() => 4
 | |
|    **/
 | |
|   "neg": function() {
 | |
| 
 | |
|     return newFraction(-this["s"] * this["n"], this["d"]);
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * Adds two rational numbers
 | |
|    *
 | |
|    * Ex: new Fraction({n: 2, d: 3}).add("14.9") => 467 / 30
 | |
|    **/
 | |
|   "add": function(a, b) {
 | |
| 
 | |
|     parse(a, b);
 | |
|     return newFraction(
 | |
|       this["s"] * this["n"] * P["d"] + P["s"] * this["d"] * P["n"],
 | |
|       this["d"] * P["d"]
 | |
|     );
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * Subtracts two rational numbers
 | |
|    *
 | |
|    * Ex: new Fraction({n: 2, d: 3}).add("14.9") => -427 / 30
 | |
|    **/
 | |
|   "sub": function(a, b) {
 | |
| 
 | |
|     parse(a, b);
 | |
|     return newFraction(
 | |
|       this["s"] * this["n"] * P["d"] - P["s"] * this["d"] * P["n"],
 | |
|       this["d"] * P["d"]
 | |
|     );
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * Multiplies two rational numbers
 | |
|    *
 | |
|    * Ex: new Fraction("-17.(345)").mul(3) => 5776 / 111
 | |
|    **/
 | |
|   "mul": function(a, b) {
 | |
| 
 | |
|     parse(a, b);
 | |
|     return newFraction(
 | |
|       this["s"] * P["s"] * this["n"] * P["n"],
 | |
|       this["d"] * P["d"]
 | |
|     );
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * Divides two rational numbers
 | |
|    *
 | |
|    * Ex: new Fraction("-17.(345)").inverse().div(3)
 | |
|    **/
 | |
|   "div": function(a, b) {
 | |
| 
 | |
|     parse(a, b);
 | |
|     return newFraction(
 | |
|       this["s"] * P["s"] * this["n"] * P["d"],
 | |
|       this["d"] * P["n"]
 | |
|     );
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * Clones the actual object
 | |
|    *
 | |
|    * Ex: new Fraction("-17.(345)").clone()
 | |
|    **/
 | |
|   "clone": function() {
 | |
|     return newFraction(this['s'] * this['n'], this['d']);
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * Calculates the modulo of two rational numbers - a more precise fmod
 | |
|    *
 | |
|    * Ex: new Fraction('4.(3)').mod([7, 8]) => (13/3) % (7/8) = (5/6)
 | |
|    **/
 | |
|   "mod": function(a, b) {
 | |
| 
 | |
|     if (isNaN(this['n']) || isNaN(this['d'])) {
 | |
|       return new Fraction(NaN);
 | |
|     }
 | |
| 
 | |
|     if (a === undefined) {
 | |
|       return newFraction(this["s"] * this["n"] % this["d"], 1);
 | |
|     }
 | |
| 
 | |
|     parse(a, b);
 | |
|     if (0 === P["n"] && 0 === this["d"]) {
 | |
|       throw DivisionByZero();
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * First silly attempt, kinda slow
 | |
|      *
 | |
|      return that["sub"]({
 | |
|      "n": num["n"] * Math.floor((this.n / this.d) / (num.n / num.d)),
 | |
|      "d": num["d"],
 | |
|      "s": this["s"]
 | |
|      });*/
 | |
| 
 | |
|     /*
 | |
|      * New attempt: a1 / b1 = a2 / b2 * q + r
 | |
|      * => b2 * a1 = a2 * b1 * q + b1 * b2 * r
 | |
|      * => (b2 * a1 % a2 * b1) / (b1 * b2)
 | |
|      */
 | |
|     return newFraction(
 | |
|       this["s"] * (P["d"] * this["n"]) % (P["n"] * this["d"]),
 | |
|       P["d"] * this["d"]
 | |
|     );
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * Calculates the fractional gcd of two rational numbers
 | |
|    *
 | |
|    * Ex: new Fraction(5,8).gcd(3,7) => 1/56
 | |
|    */
 | |
|   "gcd": function(a, b) {
 | |
| 
 | |
|     parse(a, b);
 | |
| 
 | |
|     // gcd(a / b, c / d) = gcd(a, c) / lcm(b, d)
 | |
| 
 | |
|     return newFraction(gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]), P["d"] * this["d"]);
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * Calculates the fractional lcm of two rational numbers
 | |
|    *
 | |
|    * Ex: new Fraction(5,8).lcm(3,7) => 15
 | |
|    */
 | |
|   "lcm": function(a, b) {
 | |
| 
 | |
|     parse(a, b);
 | |
| 
 | |
|     // lcm(a / b, c / d) = lcm(a, c) / gcd(b, d)
 | |
| 
 | |
|     if (P["n"] === 0 && this["n"] === 0) {
 | |
|       return newFraction(0, 1);
 | |
|     }
 | |
|     return newFraction(P["n"] * this["n"], gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]));
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * Calculates the ceil of a rational number
 | |
|    *
 | |
|    * Ex: new Fraction('4.(3)').ceil() => (5 / 1)
 | |
|    **/
 | |
|   "ceil": function(places) {
 | |
| 
 | |
|     places = Math.pow(10, places || 0);
 | |
| 
 | |
|     if (isNaN(this["n"]) || isNaN(this["d"])) {
 | |
|       return new Fraction(NaN);
 | |
|     }
 | |
|     return newFraction(Math.ceil(places * this["s"] * this["n"] / this["d"]), places);
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * Calculates the floor of a rational number
 | |
|    *
 | |
|    * Ex: new Fraction('4.(3)').floor() => (4 / 1)
 | |
|    **/
 | |
|   "floor": function(places) {
 | |
| 
 | |
|     places = Math.pow(10, places || 0);
 | |
| 
 | |
|     if (isNaN(this["n"]) || isNaN(this["d"])) {
 | |
|       return new Fraction(NaN);
 | |
|     }
 | |
|     return newFraction(Math.floor(places * this["s"] * this["n"] / this["d"]), places);
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * Rounds a rational number
 | |
|    *
 | |
|    * Ex: new Fraction('4.(3)').round() => (4 / 1)
 | |
|    **/
 | |
|   "round": function(places) {
 | |
| 
 | |
|     places = Math.pow(10, places || 0);
 | |
| 
 | |
|     if (isNaN(this["n"]) || isNaN(this["d"])) {
 | |
|       return new Fraction(NaN);
 | |
|     }
 | |
|     return newFraction(Math.round(places * this["s"] * this["n"] / this["d"]), places);
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * Rounds a rational number to a multiple of another rational number
 | |
|    *
 | |
|    * Ex: new Fraction('0.9').roundTo("1/8") => 7 / 8
 | |
|    **/
 | |
|   "roundTo": function(a, b) {
 | |
| 
 | |
|     /*
 | |
|     k * x/y ≤ a/b < (k+1) * x/y
 | |
|     ⇔ k ≤ a/b / (x/y) < (k+1)
 | |
|     ⇔ k = floor(a/b * y/x)
 | |
|     */
 | |
| 
 | |
|     parse(a, b);
 | |
| 
 | |
|     return newFraction(this['s'] * Math.round(this['n'] * P['d'] / (this['d'] * P['n'])) * P['n'], P['d']);
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * Gets the inverse of the fraction, means numerator and denominator are exchanged
 | |
|    *
 | |
|    * Ex: new Fraction([-3, 4]).inverse() => -4 / 3
 | |
|    **/
 | |
|   "inverse": function() {
 | |
| 
 | |
|     return newFraction(this["s"] * this["d"], this["n"]);
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * Calculates the fraction to some rational exponent, if possible
 | |
|    *
 | |
|    * Ex: new Fraction(-1,2).pow(-3) => -8
 | |
|    */
 | |
|   "pow": function(a, b) {
 | |
| 
 | |
|     parse(a, b);
 | |
| 
 | |
|     // Trivial case when exp is an integer
 | |
| 
 | |
|     if (P['d'] === 1) {
 | |
| 
 | |
|       if (P['s'] < 0) {
 | |
|         return newFraction(Math.pow(this['s'] * this["d"], P['n']), Math.pow(this["n"], P['n']));
 | |
|       } else {
 | |
|         return newFraction(Math.pow(this['s'] * this["n"], P['n']), Math.pow(this["d"], P['n']));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Negative roots become complex
 | |
|     //     (-a/b)^(c/d) = x
 | |
|     // <=> (-1)^(c/d) * (a/b)^(c/d) = x
 | |
|     // <=> (cos(pi) + i*sin(pi))^(c/d) * (a/b)^(c/d) = x         # rotate 1 by 180°
 | |
|     // <=> (cos(c*pi/d) + i*sin(c*pi/d)) * (a/b)^(c/d) = x       # DeMoivre's formula in Q ( https://proofwiki.org/wiki/De_Moivre%27s_Formula/Rational_Index )
 | |
|     // From which follows that only for c=0 the root is non-complex. c/d is a reduced fraction, so that sin(c/dpi)=0 occurs for d=1, which is handled by our trivial case.
 | |
|     if (this['s'] < 0) return null;
 | |
| 
 | |
|     // Now prime factor n and d
 | |
|     var N = factorize(this['n']);
 | |
|     var D = factorize(this['d']);
 | |
| 
 | |
|     // Exponentiate and take root for n and d individually
 | |
|     var n = 1;
 | |
|     var d = 1;
 | |
|     for (var k in N) {
 | |
|       if (k === '1') continue;
 | |
|       if (k === '0') {
 | |
|         n = 0;
 | |
|         break;
 | |
|       }
 | |
|       N[k]*= P['n'];
 | |
| 
 | |
|       if (N[k] % P['d'] === 0) {
 | |
|         N[k]/= P['d'];
 | |
|       } else return null;
 | |
|       n*= Math.pow(k, N[k]);
 | |
|     }
 | |
| 
 | |
|     for (var k in D) {
 | |
|       if (k === '1') continue;
 | |
|       D[k]*= P['n'];
 | |
| 
 | |
|       if (D[k] % P['d'] === 0) {
 | |
|         D[k]/= P['d'];
 | |
|       } else return null;
 | |
|       d*= Math.pow(k, D[k]);
 | |
|     }
 | |
| 
 | |
|     if (P['s'] < 0) {
 | |
|       return newFraction(d, n);
 | |
|     }
 | |
|     return newFraction(n, d);
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * Check if two rational numbers are the same
 | |
|    *
 | |
|    * Ex: new Fraction(19.6).equals([98, 5]);
 | |
|    **/
 | |
|   "equals": function(a, b) {
 | |
| 
 | |
|     parse(a, b);
 | |
|     return this["s"] * this["n"] * P["d"] === P["s"] * P["n"] * this["d"]; // Same as compare() === 0
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * Check if two rational numbers are the same
 | |
|    *
 | |
|    * Ex: new Fraction(19.6).equals([98, 5]);
 | |
|    **/
 | |
|   "compare": function(a, b) {
 | |
| 
 | |
|     parse(a, b);
 | |
|     var t = (this["s"] * this["n"] * P["d"] - P["s"] * P["n"] * this["d"]);
 | |
|     return (0 < t) - (t < 0);
 | |
|   },
 | |
| 
 | |
|   "simplify": function(eps) {
 | |
| 
 | |
|     if (isNaN(this['n']) || isNaN(this['d'])) {
 | |
|       return this;
 | |
|     }
 | |
| 
 | |
|     eps = eps || 0.001;
 | |
| 
 | |
|     var thisABS = this['abs']();
 | |
|     var cont = thisABS['toContinued']();
 | |
| 
 | |
|     for (var i = 1; i < cont.length; i++) {
 | |
| 
 | |
|       var s = newFraction(cont[i - 1], 1);
 | |
|       for (var k = i - 2; k >= 0; k--) {
 | |
|         s = s['inverse']()['add'](cont[k]);
 | |
|       }
 | |
| 
 | |
|       if (Math.abs(s['sub'](thisABS).valueOf()) < eps) {
 | |
|         return s['mul'](this['s']);
 | |
|       }
 | |
|     }
 | |
|     return this;
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * Check if two rational numbers are divisible
 | |
|    *
 | |
|    * Ex: new Fraction(19.6).divisible(1.5);
 | |
|    */
 | |
|   "divisible": function(a, b) {
 | |
| 
 | |
|     parse(a, b);
 | |
|     return !(!(P["n"] * this["d"]) || ((this["n"] * P["d"]) % (P["n"] * this["d"])));
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * Returns a decimal representation of the fraction
 | |
|    *
 | |
|    * Ex: new Fraction("100.'91823'").valueOf() => 100.91823918239183
 | |
|    **/
 | |
|   'valueOf': function() {
 | |
| 
 | |
|     return this["s"] * this["n"] / this["d"];
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * Returns a string-fraction representation of a Fraction object
 | |
|    *
 | |
|    * Ex: new Fraction("1.'3'").toFraction(true) => "4 1/3"
 | |
|    **/
 | |
|   'toFraction': function(excludeWhole) {
 | |
| 
 | |
|     var whole, str = "";
 | |
|     var n = this["n"];
 | |
|     var d = this["d"];
 | |
|     if (this["s"] < 0) {
 | |
|       str+= '-';
 | |
|     }
 | |
| 
 | |
|     if (d === 1) {
 | |
|       str+= n;
 | |
|     } else {
 | |
| 
 | |
|       if (excludeWhole && (whole = Math.floor(n / d)) > 0) {
 | |
|         str+= whole;
 | |
|         str+= " ";
 | |
|         n%= d;
 | |
|       }
 | |
| 
 | |
|       str+= n;
 | |
|       str+= '/';
 | |
|       str+= d;
 | |
|     }
 | |
|     return str;
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * Returns a latex representation of a Fraction object
 | |
|    *
 | |
|    * Ex: new Fraction("1.'3'").toLatex() => "\frac{4}{3}"
 | |
|    **/
 | |
|   'toLatex': function(excludeWhole) {
 | |
| 
 | |
|     var whole, str = "";
 | |
|     var n = this["n"];
 | |
|     var d = this["d"];
 | |
|     if (this["s"] < 0) {
 | |
|       str+= '-';
 | |
|     }
 | |
| 
 | |
|     if (d === 1) {
 | |
|       str+= n;
 | |
|     } else {
 | |
| 
 | |
|       if (excludeWhole && (whole = Math.floor(n / d)) > 0) {
 | |
|         str+= whole;
 | |
|         n%= d;
 | |
|       }
 | |
| 
 | |
|       str+= "\\frac{";
 | |
|       str+= n;
 | |
|       str+= '}{';
 | |
|       str+= d;
 | |
|       str+= '}';
 | |
|     }
 | |
|     return str;
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * Returns an array of continued fraction elements
 | |
|    *
 | |
|    * Ex: new Fraction("7/8").toContinued() => [0,1,7]
 | |
|    */
 | |
|   'toContinued': function() {
 | |
| 
 | |
|     var t;
 | |
|     var a = this['n'];
 | |
|     var b = this['d'];
 | |
|     var res = [];
 | |
| 
 | |
|     if (isNaN(a) || isNaN(b)) {
 | |
|       return res;
 | |
|     }
 | |
| 
 | |
|     do {
 | |
|       res.push(Math.floor(a / b));
 | |
|       t = a % b;
 | |
|       a = b;
 | |
|       b = t;
 | |
|     } while (a !== 1);
 | |
| 
 | |
|     return res;
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * Creates a string representation of a fraction with all digits
 | |
|    *
 | |
|    * Ex: new Fraction("100.'91823'").toString() => "100.(91823)"
 | |
|    **/
 | |
|   'toString': function(dec) {
 | |
| 
 | |
|     var N = this["n"];
 | |
|     var D = this["d"];
 | |
| 
 | |
|     if (isNaN(N) || isNaN(D)) {
 | |
|       return "NaN";
 | |
|     }
 | |
| 
 | |
|     dec = dec || 15; // 15 = decimal places when no repetation
 | |
| 
 | |
|     var cycLen = cycleLen(N, D); // Cycle length
 | |
|     var cycOff = cycleStart(N, D, cycLen); // Cycle start
 | |
| 
 | |
|     var str = this['s'] < 0 ? "-" : "";
 | |
| 
 | |
|     str+= N / D | 0;
 | |
| 
 | |
|     N%= D;
 | |
|     N*= 10;
 | |
| 
 | |
|     if (N)
 | |
|       str+= ".";
 | |
| 
 | |
|     if (cycLen) {
 | |
| 
 | |
|       for (var i = cycOff; i--;) {
 | |
|         str+= N / D | 0;
 | |
|         N%= D;
 | |
|         N*= 10;
 | |
|       }
 | |
|       str+= "(";
 | |
|       for (var i = cycLen; i--;) {
 | |
|         str+= N / D | 0;
 | |
|         N%= D;
 | |
|         N*= 10;
 | |
|       }
 | |
|       str+= ")";
 | |
|     } else {
 | |
|       for (var i = dec; N && i--;) {
 | |
|         str+= N / D | 0;
 | |
|         N%= D;
 | |
|         N*= 10;
 | |
|       }
 | |
|     }
 | |
|     return str;
 | |
|   }
 | |
| };
 |