380 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			380 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| 'use strict';
 | |
| 
 | |
| const regTransformTypes = /matrix|translate|scale|rotate|skewX|skewY/;
 | |
| const regTransformSplit =
 | |
|   /\s*(matrix|translate|scale|rotate|skewX|skewY)\s*\(\s*(.+?)\s*\)[\s,]*/;
 | |
| const regNumericValues = /[-+]?(?:\d*\.\d+|\d+\.?)(?:[eE][-+]?\d+)?/g;
 | |
| 
 | |
| /**
 | |
|  * @typedef {{ name: string, data: Array<number> }} TransformItem
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * Convert transform string to JS representation.
 | |
|  *
 | |
|  * @type {(transformString: string) => Array<TransformItem>}
 | |
|  */
 | |
| exports.transform2js = (transformString) => {
 | |
|   // JS representation of the transform data
 | |
|   /**
 | |
|    * @type {Array<TransformItem>}
 | |
|    */
 | |
|   const transforms = [];
 | |
|   // current transform context
 | |
|   /**
 | |
|    * @type {null | TransformItem}
 | |
|    */
 | |
|   let current = null;
 | |
|   // split value into ['', 'translate', '10 50', '', 'scale', '2', '', 'rotate', '-45', '']
 | |
|   for (const item of transformString.split(regTransformSplit)) {
 | |
|     var num;
 | |
|     if (item) {
 | |
|       // if item is a translate function
 | |
|       if (regTransformTypes.test(item)) {
 | |
|         // then collect it and change current context
 | |
|         current = { name: item, data: [] };
 | |
|         transforms.push(current);
 | |
|         // else if item is data
 | |
|       } else {
 | |
|         // then split it into [10, 50] and collect as context.data
 | |
|         // eslint-disable-next-line no-cond-assign
 | |
|         while ((num = regNumericValues.exec(item))) {
 | |
|           num = Number(num);
 | |
|           if (current != null) {
 | |
|             current.data.push(num);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // return empty array if broken transform (no data)
 | |
|   return current == null || current.data.length == 0 ? [] : transforms;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Multiply transforms into one.
 | |
|  *
 | |
|  * @type {(transforms: Array<TransformItem>) => TransformItem}
 | |
|  */
 | |
| exports.transformsMultiply = (transforms) => {
 | |
|   // convert transforms objects to the matrices
 | |
|   const matrixData = transforms.map((transform) => {
 | |
|     if (transform.name === 'matrix') {
 | |
|       return transform.data;
 | |
|     }
 | |
|     return transformToMatrix(transform);
 | |
|   });
 | |
|   // multiply all matrices into one
 | |
|   const matrixTransform = {
 | |
|     name: 'matrix',
 | |
|     data:
 | |
|       matrixData.length > 0 ? matrixData.reduce(multiplyTransformMatrices) : [],
 | |
|   };
 | |
|   return matrixTransform;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * math utilities in radians.
 | |
|  */
 | |
| const mth = {
 | |
|   /**
 | |
|    * @type {(deg: number) => number}
 | |
|    */
 | |
|   rad: (deg) => {
 | |
|     return (deg * Math.PI) / 180;
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * @type {(rad: number) => number}
 | |
|    */
 | |
|   deg: (rad) => {
 | |
|     return (rad * 180) / Math.PI;
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * @type {(deg: number) => number}
 | |
|    */
 | |
|   cos: (deg) => {
 | |
|     return Math.cos(mth.rad(deg));
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * @type {(val: number, floatPrecision: number) => number}
 | |
|    */
 | |
|   acos: (val, floatPrecision) => {
 | |
|     return Number(mth.deg(Math.acos(val)).toFixed(floatPrecision));
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * @type {(deg: number) => number}
 | |
|    */
 | |
|   sin: (deg) => {
 | |
|     return Math.sin(mth.rad(deg));
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * @type {(val: number, floatPrecision: number) => number}
 | |
|    */
 | |
|   asin: (val, floatPrecision) => {
 | |
|     return Number(mth.deg(Math.asin(val)).toFixed(floatPrecision));
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * @type {(deg: number) => number}
 | |
|    */
 | |
|   tan: (deg) => {
 | |
|     return Math.tan(mth.rad(deg));
 | |
|   },
 | |
| 
 | |
|   /**
 | |
|    * @type {(val: number, floatPrecision: number) => number}
 | |
|    */
 | |
|   atan: (val, floatPrecision) => {
 | |
|     return Number(mth.deg(Math.atan(val)).toFixed(floatPrecision));
 | |
|   },
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * @typedef {{
 | |
|  *   convertToShorts: boolean,
 | |
|  *   floatPrecision: number,
 | |
|  *   transformPrecision: number,
 | |
|  *   matrixToTransform: boolean,
 | |
|  *   shortTranslate: boolean,
 | |
|  *   shortScale: boolean,
 | |
|  *   shortRotate: boolean,
 | |
|  *   removeUseless: boolean,
 | |
|  *   collapseIntoOne: boolean,
 | |
|  *   leadingZero: boolean,
 | |
|  *   negativeExtraSpace: boolean,
 | |
|  * }} TransformParams
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * Decompose matrix into simple transforms. See
 | |
|  * https://frederic-wang.fr/decomposition-of-2d-transform-matrices.html
 | |
|  *
 | |
|  * @type {(transform: TransformItem, params: TransformParams) => Array<TransformItem>}
 | |
|  */
 | |
| exports.matrixToTransform = (transform, params) => {
 | |
|   let floatPrecision = params.floatPrecision;
 | |
|   let data = transform.data;
 | |
|   let transforms = [];
 | |
|   let sx = Number(
 | |
|     Math.hypot(data[0], data[1]).toFixed(params.transformPrecision)
 | |
|   );
 | |
|   let sy = Number(
 | |
|     ((data[0] * data[3] - data[1] * data[2]) / sx).toFixed(
 | |
|       params.transformPrecision
 | |
|     )
 | |
|   );
 | |
|   let colsSum = data[0] * data[2] + data[1] * data[3];
 | |
|   let rowsSum = data[0] * data[1] + data[2] * data[3];
 | |
|   let scaleBefore = rowsSum != 0 || sx == sy;
 | |
| 
 | |
|   // [..., ..., ..., ..., tx, ty] → translate(tx, ty)
 | |
|   if (data[4] || data[5]) {
 | |
|     transforms.push({
 | |
|       name: 'translate',
 | |
|       data: data.slice(4, data[5] ? 6 : 5),
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   // [sx, 0, tan(a)·sy, sy, 0, 0] → skewX(a)·scale(sx, sy)
 | |
|   if (!data[1] && data[2]) {
 | |
|     transforms.push({
 | |
|       name: 'skewX',
 | |
|       data: [mth.atan(data[2] / sy, floatPrecision)],
 | |
|     });
 | |
| 
 | |
|     // [sx, sx·tan(a), 0, sy, 0, 0] → skewY(a)·scale(sx, sy)
 | |
|   } else if (data[1] && !data[2]) {
 | |
|     transforms.push({
 | |
|       name: 'skewY',
 | |
|       data: [mth.atan(data[1] / data[0], floatPrecision)],
 | |
|     });
 | |
|     sx = data[0];
 | |
|     sy = data[3];
 | |
| 
 | |
|     // [sx·cos(a), sx·sin(a), sy·-sin(a), sy·cos(a), x, y] → rotate(a[, cx, cy])·(scale or skewX) or
 | |
|     // [sx·cos(a), sy·sin(a), sx·-sin(a), sy·cos(a), x, y] → scale(sx, sy)·rotate(a[, cx, cy]) (if !scaleBefore)
 | |
|   } else if (!colsSum || (sx == 1 && sy == 1) || !scaleBefore) {
 | |
|     if (!scaleBefore) {
 | |
|       sx = (data[0] < 0 ? -1 : 1) * Math.hypot(data[0], data[2]);
 | |
|       sy = (data[3] < 0 ? -1 : 1) * Math.hypot(data[1], data[3]);
 | |
|       transforms.push({ name: 'scale', data: [sx, sy] });
 | |
|     }
 | |
|     var angle = Math.min(Math.max(-1, data[0] / sx), 1),
 | |
|       rotate = [
 | |
|         mth.acos(angle, floatPrecision) *
 | |
|           ((scaleBefore ? 1 : sy) * data[1] < 0 ? -1 : 1),
 | |
|       ];
 | |
| 
 | |
|     if (rotate[0]) transforms.push({ name: 'rotate', data: rotate });
 | |
| 
 | |
|     if (rowsSum && colsSum)
 | |
|       transforms.push({
 | |
|         name: 'skewX',
 | |
|         data: [mth.atan(colsSum / (sx * sx), floatPrecision)],
 | |
|       });
 | |
| 
 | |
|     // rotate(a, cx, cy) can consume translate() within optional arguments cx, cy (rotation point)
 | |
|     if (rotate[0] && (data[4] || data[5])) {
 | |
|       transforms.shift();
 | |
|       var cos = data[0] / sx,
 | |
|         sin = data[1] / (scaleBefore ? sx : sy),
 | |
|         x = data[4] * (scaleBefore ? 1 : sy),
 | |
|         y = data[5] * (scaleBefore ? 1 : sx),
 | |
|         denom =
 | |
|           (Math.pow(1 - cos, 2) + Math.pow(sin, 2)) *
 | |
|           (scaleBefore ? 1 : sx * sy);
 | |
|       rotate.push(((1 - cos) * x - sin * y) / denom);
 | |
|       rotate.push(((1 - cos) * y + sin * x) / denom);
 | |
|     }
 | |
| 
 | |
|     // Too many transformations, return original matrix if it isn't just a scale/translate
 | |
|   } else if (data[1] || data[2]) {
 | |
|     return [transform];
 | |
|   }
 | |
| 
 | |
|   if ((scaleBefore && (sx != 1 || sy != 1)) || !transforms.length)
 | |
|     transforms.push({
 | |
|       name: 'scale',
 | |
|       data: sx == sy ? [sx] : [sx, sy],
 | |
|     });
 | |
| 
 | |
|   return transforms;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Convert transform to the matrix data.
 | |
|  *
 | |
|  * @type {(transform: TransformItem) => Array<number> }
 | |
|  */
 | |
| const transformToMatrix = (transform) => {
 | |
|   if (transform.name === 'matrix') {
 | |
|     return transform.data;
 | |
|   }
 | |
|   switch (transform.name) {
 | |
|     case 'translate':
 | |
|       // [1, 0, 0, 1, tx, ty]
 | |
|       return [1, 0, 0, 1, transform.data[0], transform.data[1] || 0];
 | |
|     case 'scale':
 | |
|       // [sx, 0, 0, sy, 0, 0]
 | |
|       return [
 | |
|         transform.data[0],
 | |
|         0,
 | |
|         0,
 | |
|         transform.data[1] || transform.data[0],
 | |
|         0,
 | |
|         0,
 | |
|       ];
 | |
|     case 'rotate':
 | |
|       // [cos(a), sin(a), -sin(a), cos(a), x, y]
 | |
|       var cos = mth.cos(transform.data[0]),
 | |
|         sin = mth.sin(transform.data[0]),
 | |
|         cx = transform.data[1] || 0,
 | |
|         cy = transform.data[2] || 0;
 | |
|       return [
 | |
|         cos,
 | |
|         sin,
 | |
|         -sin,
 | |
|         cos,
 | |
|         (1 - cos) * cx + sin * cy,
 | |
|         (1 - cos) * cy - sin * cx,
 | |
|       ];
 | |
|     case 'skewX':
 | |
|       // [1, 0, tan(a), 1, 0, 0]
 | |
|       return [1, 0, mth.tan(transform.data[0]), 1, 0, 0];
 | |
|     case 'skewY':
 | |
|       // [1, tan(a), 0, 1, 0, 0]
 | |
|       return [1, mth.tan(transform.data[0]), 0, 1, 0, 0];
 | |
|     default:
 | |
|       throw Error(`Unknown transform ${transform.name}`);
 | |
|   }
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Applies transformation to an arc. To do so, we represent ellipse as a matrix, multiply it
 | |
|  * by the transformation matrix and use a singular value decomposition to represent in a form
 | |
|  * rotate(θ)·scale(a b)·rotate(φ). This gives us new ellipse params a, b and θ.
 | |
|  * SVD is being done with the formulae provided by Wolffram|Alpha (svd {{m0, m2}, {m1, m3}})
 | |
|  *
 | |
|  * @type {(
 | |
|  *   cursor: [x: number, y: number],
 | |
|  *   arc: Array<number>,
 | |
|  *   transform: Array<number>
 | |
|  * ) => Array<number>}
 | |
|  */
 | |
| exports.transformArc = (cursor, arc, transform) => {
 | |
|   const x = arc[5] - cursor[0];
 | |
|   const y = arc[6] - cursor[1];
 | |
|   let a = arc[0];
 | |
|   let b = arc[1];
 | |
|   const rot = (arc[2] * Math.PI) / 180;
 | |
|   const cos = Math.cos(rot);
 | |
|   const sin = Math.sin(rot);
 | |
|   // skip if radius is 0
 | |
|   if (a > 0 && b > 0) {
 | |
|     let h =
 | |
|       Math.pow(x * cos + y * sin, 2) / (4 * a * a) +
 | |
|       Math.pow(y * cos - x * sin, 2) / (4 * b * b);
 | |
|     if (h > 1) {
 | |
|       h = Math.sqrt(h);
 | |
|       a *= h;
 | |
|       b *= h;
 | |
|     }
 | |
|   }
 | |
|   const ellipse = [a * cos, a * sin, -b * sin, b * cos, 0, 0];
 | |
|   const m = multiplyTransformMatrices(transform, ellipse);
 | |
|   // Decompose the new ellipse matrix
 | |
|   const lastCol = m[2] * m[2] + m[3] * m[3];
 | |
|   const squareSum = m[0] * m[0] + m[1] * m[1] + lastCol;
 | |
|   const root =
 | |
|     Math.hypot(m[0] - m[3], m[1] + m[2]) * Math.hypot(m[0] + m[3], m[1] - m[2]);
 | |
| 
 | |
|   if (!root) {
 | |
|     // circle
 | |
|     arc[0] = arc[1] = Math.sqrt(squareSum / 2);
 | |
|     arc[2] = 0;
 | |
|   } else {
 | |
|     const majorAxisSqr = (squareSum + root) / 2;
 | |
|     const minorAxisSqr = (squareSum - root) / 2;
 | |
|     const major = Math.abs(majorAxisSqr - lastCol) > 1e-6;
 | |
|     const sub = (major ? majorAxisSqr : minorAxisSqr) - lastCol;
 | |
|     const rowsSum = m[0] * m[2] + m[1] * m[3];
 | |
|     const term1 = m[0] * sub + m[2] * rowsSum;
 | |
|     const term2 = m[1] * sub + m[3] * rowsSum;
 | |
|     arc[0] = Math.sqrt(majorAxisSqr);
 | |
|     arc[1] = Math.sqrt(minorAxisSqr);
 | |
|     arc[2] =
 | |
|       (((major ? term2 < 0 : term1 > 0) ? -1 : 1) *
 | |
|         Math.acos((major ? term1 : term2) / Math.hypot(term1, term2)) *
 | |
|         180) /
 | |
|       Math.PI;
 | |
|   }
 | |
| 
 | |
|   if (transform[0] < 0 !== transform[3] < 0) {
 | |
|     // Flip the sweep flag if coordinates are being flipped horizontally XOR vertically
 | |
|     arc[4] = 1 - arc[4];
 | |
|   }
 | |
| 
 | |
|   return arc;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Multiply transformation matrices.
 | |
|  *
 | |
|  * @type {(a: Array<number>, b: Array<number>) => Array<number>}
 | |
|  */
 | |
| const multiplyTransformMatrices = (a, b) => {
 | |
|   return [
 | |
|     a[0] * b[0] + a[2] * b[1],
 | |
|     a[1] * b[0] + a[3] * b[1],
 | |
|     a[0] * b[2] + a[2] * b[3],
 | |
|     a[1] * b[2] + a[3] * b[3],
 | |
|     a[0] * b[4] + a[2] * b[5] + a[4],
 | |
|     a[1] * b[4] + a[3] * b[5] + a[5],
 | |
|   ];
 | |
| };
 |