380 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			380 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
'use strict';
 | 
						|
 | 
						|
const regTransformTypes = /matrix|translate|scale|rotate|skewX|skewY/;
 | 
						|
const regTransformSplit =
 | 
						|
  /\s*(matrix|translate|scale|rotate|skewX|skewY)\s*\(\s*(.+?)\s*\)[\s,]*/;
 | 
						|
const regNumericValues = /[-+]?(?:\d*\.\d+|\d+\.?)(?:[eE][-+]?\d+)?/g;
 | 
						|
 | 
						|
/**
 | 
						|
 * @typedef {{ name: string, data: Array<number> }} TransformItem
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * Convert transform string to JS representation.
 | 
						|
 *
 | 
						|
 * @type {(transformString: string) => Array<TransformItem>}
 | 
						|
 */
 | 
						|
exports.transform2js = (transformString) => {
 | 
						|
  // JS representation of the transform data
 | 
						|
  /**
 | 
						|
   * @type {Array<TransformItem>}
 | 
						|
   */
 | 
						|
  const transforms = [];
 | 
						|
  // current transform context
 | 
						|
  /**
 | 
						|
   * @type {null | TransformItem}
 | 
						|
   */
 | 
						|
  let current = null;
 | 
						|
  // split value into ['', 'translate', '10 50', '', 'scale', '2', '', 'rotate', '-45', '']
 | 
						|
  for (const item of transformString.split(regTransformSplit)) {
 | 
						|
    var num;
 | 
						|
    if (item) {
 | 
						|
      // if item is a translate function
 | 
						|
      if (regTransformTypes.test(item)) {
 | 
						|
        // then collect it and change current context
 | 
						|
        current = { name: item, data: [] };
 | 
						|
        transforms.push(current);
 | 
						|
        // else if item is data
 | 
						|
      } else {
 | 
						|
        // then split it into [10, 50] and collect as context.data
 | 
						|
        // eslint-disable-next-line no-cond-assign
 | 
						|
        while ((num = regNumericValues.exec(item))) {
 | 
						|
          num = Number(num);
 | 
						|
          if (current != null) {
 | 
						|
            current.data.push(num);
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // return empty array if broken transform (no data)
 | 
						|
  return current == null || current.data.length == 0 ? [] : transforms;
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * Multiply transforms into one.
 | 
						|
 *
 | 
						|
 * @type {(transforms: Array<TransformItem>) => TransformItem}
 | 
						|
 */
 | 
						|
exports.transformsMultiply = (transforms) => {
 | 
						|
  // convert transforms objects to the matrices
 | 
						|
  const matrixData = transforms.map((transform) => {
 | 
						|
    if (transform.name === 'matrix') {
 | 
						|
      return transform.data;
 | 
						|
    }
 | 
						|
    return transformToMatrix(transform);
 | 
						|
  });
 | 
						|
  // multiply all matrices into one
 | 
						|
  const matrixTransform = {
 | 
						|
    name: 'matrix',
 | 
						|
    data:
 | 
						|
      matrixData.length > 0 ? matrixData.reduce(multiplyTransformMatrices) : [],
 | 
						|
  };
 | 
						|
  return matrixTransform;
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * math utilities in radians.
 | 
						|
 */
 | 
						|
const mth = {
 | 
						|
  /**
 | 
						|
   * @type {(deg: number) => number}
 | 
						|
   */
 | 
						|
  rad: (deg) => {
 | 
						|
    return (deg * Math.PI) / 180;
 | 
						|
  },
 | 
						|
 | 
						|
  /**
 | 
						|
   * @type {(rad: number) => number}
 | 
						|
   */
 | 
						|
  deg: (rad) => {
 | 
						|
    return (rad * 180) / Math.PI;
 | 
						|
  },
 | 
						|
 | 
						|
  /**
 | 
						|
   * @type {(deg: number) => number}
 | 
						|
   */
 | 
						|
  cos: (deg) => {
 | 
						|
    return Math.cos(mth.rad(deg));
 | 
						|
  },
 | 
						|
 | 
						|
  /**
 | 
						|
   * @type {(val: number, floatPrecision: number) => number}
 | 
						|
   */
 | 
						|
  acos: (val, floatPrecision) => {
 | 
						|
    return Number(mth.deg(Math.acos(val)).toFixed(floatPrecision));
 | 
						|
  },
 | 
						|
 | 
						|
  /**
 | 
						|
   * @type {(deg: number) => number}
 | 
						|
   */
 | 
						|
  sin: (deg) => {
 | 
						|
    return Math.sin(mth.rad(deg));
 | 
						|
  },
 | 
						|
 | 
						|
  /**
 | 
						|
   * @type {(val: number, floatPrecision: number) => number}
 | 
						|
   */
 | 
						|
  asin: (val, floatPrecision) => {
 | 
						|
    return Number(mth.deg(Math.asin(val)).toFixed(floatPrecision));
 | 
						|
  },
 | 
						|
 | 
						|
  /**
 | 
						|
   * @type {(deg: number) => number}
 | 
						|
   */
 | 
						|
  tan: (deg) => {
 | 
						|
    return Math.tan(mth.rad(deg));
 | 
						|
  },
 | 
						|
 | 
						|
  /**
 | 
						|
   * @type {(val: number, floatPrecision: number) => number}
 | 
						|
   */
 | 
						|
  atan: (val, floatPrecision) => {
 | 
						|
    return Number(mth.deg(Math.atan(val)).toFixed(floatPrecision));
 | 
						|
  },
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * @typedef {{
 | 
						|
 *   convertToShorts: boolean,
 | 
						|
 *   floatPrecision: number,
 | 
						|
 *   transformPrecision: number,
 | 
						|
 *   matrixToTransform: boolean,
 | 
						|
 *   shortTranslate: boolean,
 | 
						|
 *   shortScale: boolean,
 | 
						|
 *   shortRotate: boolean,
 | 
						|
 *   removeUseless: boolean,
 | 
						|
 *   collapseIntoOne: boolean,
 | 
						|
 *   leadingZero: boolean,
 | 
						|
 *   negativeExtraSpace: boolean,
 | 
						|
 * }} TransformParams
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * Decompose matrix into simple transforms. See
 | 
						|
 * https://frederic-wang.fr/decomposition-of-2d-transform-matrices.html
 | 
						|
 *
 | 
						|
 * @type {(transform: TransformItem, params: TransformParams) => Array<TransformItem>}
 | 
						|
 */
 | 
						|
exports.matrixToTransform = (transform, params) => {
 | 
						|
  let floatPrecision = params.floatPrecision;
 | 
						|
  let data = transform.data;
 | 
						|
  let transforms = [];
 | 
						|
  let sx = Number(
 | 
						|
    Math.hypot(data[0], data[1]).toFixed(params.transformPrecision)
 | 
						|
  );
 | 
						|
  let sy = Number(
 | 
						|
    ((data[0] * data[3] - data[1] * data[2]) / sx).toFixed(
 | 
						|
      params.transformPrecision
 | 
						|
    )
 | 
						|
  );
 | 
						|
  let colsSum = data[0] * data[2] + data[1] * data[3];
 | 
						|
  let rowsSum = data[0] * data[1] + data[2] * data[3];
 | 
						|
  let scaleBefore = rowsSum != 0 || sx == sy;
 | 
						|
 | 
						|
  // [..., ..., ..., ..., tx, ty] → translate(tx, ty)
 | 
						|
  if (data[4] || data[5]) {
 | 
						|
    transforms.push({
 | 
						|
      name: 'translate',
 | 
						|
      data: data.slice(4, data[5] ? 6 : 5),
 | 
						|
    });
 | 
						|
  }
 | 
						|
 | 
						|
  // [sx, 0, tan(a)·sy, sy, 0, 0] → skewX(a)·scale(sx, sy)
 | 
						|
  if (!data[1] && data[2]) {
 | 
						|
    transforms.push({
 | 
						|
      name: 'skewX',
 | 
						|
      data: [mth.atan(data[2] / sy, floatPrecision)],
 | 
						|
    });
 | 
						|
 | 
						|
    // [sx, sx·tan(a), 0, sy, 0, 0] → skewY(a)·scale(sx, sy)
 | 
						|
  } else if (data[1] && !data[2]) {
 | 
						|
    transforms.push({
 | 
						|
      name: 'skewY',
 | 
						|
      data: [mth.atan(data[1] / data[0], floatPrecision)],
 | 
						|
    });
 | 
						|
    sx = data[0];
 | 
						|
    sy = data[3];
 | 
						|
 | 
						|
    // [sx·cos(a), sx·sin(a), sy·-sin(a), sy·cos(a), x, y] → rotate(a[, cx, cy])·(scale or skewX) or
 | 
						|
    // [sx·cos(a), sy·sin(a), sx·-sin(a), sy·cos(a), x, y] → scale(sx, sy)·rotate(a[, cx, cy]) (if !scaleBefore)
 | 
						|
  } else if (!colsSum || (sx == 1 && sy == 1) || !scaleBefore) {
 | 
						|
    if (!scaleBefore) {
 | 
						|
      sx = (data[0] < 0 ? -1 : 1) * Math.hypot(data[0], data[2]);
 | 
						|
      sy = (data[3] < 0 ? -1 : 1) * Math.hypot(data[1], data[3]);
 | 
						|
      transforms.push({ name: 'scale', data: [sx, sy] });
 | 
						|
    }
 | 
						|
    var angle = Math.min(Math.max(-1, data[0] / sx), 1),
 | 
						|
      rotate = [
 | 
						|
        mth.acos(angle, floatPrecision) *
 | 
						|
          ((scaleBefore ? 1 : sy) * data[1] < 0 ? -1 : 1),
 | 
						|
      ];
 | 
						|
 | 
						|
    if (rotate[0]) transforms.push({ name: 'rotate', data: rotate });
 | 
						|
 | 
						|
    if (rowsSum && colsSum)
 | 
						|
      transforms.push({
 | 
						|
        name: 'skewX',
 | 
						|
        data: [mth.atan(colsSum / (sx * sx), floatPrecision)],
 | 
						|
      });
 | 
						|
 | 
						|
    // rotate(a, cx, cy) can consume translate() within optional arguments cx, cy (rotation point)
 | 
						|
    if (rotate[0] && (data[4] || data[5])) {
 | 
						|
      transforms.shift();
 | 
						|
      var cos = data[0] / sx,
 | 
						|
        sin = data[1] / (scaleBefore ? sx : sy),
 | 
						|
        x = data[4] * (scaleBefore ? 1 : sy),
 | 
						|
        y = data[5] * (scaleBefore ? 1 : sx),
 | 
						|
        denom =
 | 
						|
          (Math.pow(1 - cos, 2) + Math.pow(sin, 2)) *
 | 
						|
          (scaleBefore ? 1 : sx * sy);
 | 
						|
      rotate.push(((1 - cos) * x - sin * y) / denom);
 | 
						|
      rotate.push(((1 - cos) * y + sin * x) / denom);
 | 
						|
    }
 | 
						|
 | 
						|
    // Too many transformations, return original matrix if it isn't just a scale/translate
 | 
						|
  } else if (data[1] || data[2]) {
 | 
						|
    return [transform];
 | 
						|
  }
 | 
						|
 | 
						|
  if ((scaleBefore && (sx != 1 || sy != 1)) || !transforms.length)
 | 
						|
    transforms.push({
 | 
						|
      name: 'scale',
 | 
						|
      data: sx == sy ? [sx] : [sx, sy],
 | 
						|
    });
 | 
						|
 | 
						|
  return transforms;
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * Convert transform to the matrix data.
 | 
						|
 *
 | 
						|
 * @type {(transform: TransformItem) => Array<number> }
 | 
						|
 */
 | 
						|
const transformToMatrix = (transform) => {
 | 
						|
  if (transform.name === 'matrix') {
 | 
						|
    return transform.data;
 | 
						|
  }
 | 
						|
  switch (transform.name) {
 | 
						|
    case 'translate':
 | 
						|
      // [1, 0, 0, 1, tx, ty]
 | 
						|
      return [1, 0, 0, 1, transform.data[0], transform.data[1] || 0];
 | 
						|
    case 'scale':
 | 
						|
      // [sx, 0, 0, sy, 0, 0]
 | 
						|
      return [
 | 
						|
        transform.data[0],
 | 
						|
        0,
 | 
						|
        0,
 | 
						|
        transform.data[1] || transform.data[0],
 | 
						|
        0,
 | 
						|
        0,
 | 
						|
      ];
 | 
						|
    case 'rotate':
 | 
						|
      // [cos(a), sin(a), -sin(a), cos(a), x, y]
 | 
						|
      var cos = mth.cos(transform.data[0]),
 | 
						|
        sin = mth.sin(transform.data[0]),
 | 
						|
        cx = transform.data[1] || 0,
 | 
						|
        cy = transform.data[2] || 0;
 | 
						|
      return [
 | 
						|
        cos,
 | 
						|
        sin,
 | 
						|
        -sin,
 | 
						|
        cos,
 | 
						|
        (1 - cos) * cx + sin * cy,
 | 
						|
        (1 - cos) * cy - sin * cx,
 | 
						|
      ];
 | 
						|
    case 'skewX':
 | 
						|
      // [1, 0, tan(a), 1, 0, 0]
 | 
						|
      return [1, 0, mth.tan(transform.data[0]), 1, 0, 0];
 | 
						|
    case 'skewY':
 | 
						|
      // [1, tan(a), 0, 1, 0, 0]
 | 
						|
      return [1, mth.tan(transform.data[0]), 0, 1, 0, 0];
 | 
						|
    default:
 | 
						|
      throw Error(`Unknown transform ${transform.name}`);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * Applies transformation to an arc. To do so, we represent ellipse as a matrix, multiply it
 | 
						|
 * by the transformation matrix and use a singular value decomposition to represent in a form
 | 
						|
 * rotate(θ)·scale(a b)·rotate(φ). This gives us new ellipse params a, b and θ.
 | 
						|
 * SVD is being done with the formulae provided by Wolffram|Alpha (svd {{m0, m2}, {m1, m3}})
 | 
						|
 *
 | 
						|
 * @type {(
 | 
						|
 *   cursor: [x: number, y: number],
 | 
						|
 *   arc: Array<number>,
 | 
						|
 *   transform: Array<number>
 | 
						|
 * ) => Array<number>}
 | 
						|
 */
 | 
						|
exports.transformArc = (cursor, arc, transform) => {
 | 
						|
  const x = arc[5] - cursor[0];
 | 
						|
  const y = arc[6] - cursor[1];
 | 
						|
  let a = arc[0];
 | 
						|
  let b = arc[1];
 | 
						|
  const rot = (arc[2] * Math.PI) / 180;
 | 
						|
  const cos = Math.cos(rot);
 | 
						|
  const sin = Math.sin(rot);
 | 
						|
  // skip if radius is 0
 | 
						|
  if (a > 0 && b > 0) {
 | 
						|
    let h =
 | 
						|
      Math.pow(x * cos + y * sin, 2) / (4 * a * a) +
 | 
						|
      Math.pow(y * cos - x * sin, 2) / (4 * b * b);
 | 
						|
    if (h > 1) {
 | 
						|
      h = Math.sqrt(h);
 | 
						|
      a *= h;
 | 
						|
      b *= h;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  const ellipse = [a * cos, a * sin, -b * sin, b * cos, 0, 0];
 | 
						|
  const m = multiplyTransformMatrices(transform, ellipse);
 | 
						|
  // Decompose the new ellipse matrix
 | 
						|
  const lastCol = m[2] * m[2] + m[3] * m[3];
 | 
						|
  const squareSum = m[0] * m[0] + m[1] * m[1] + lastCol;
 | 
						|
  const root =
 | 
						|
    Math.hypot(m[0] - m[3], m[1] + m[2]) * Math.hypot(m[0] + m[3], m[1] - m[2]);
 | 
						|
 | 
						|
  if (!root) {
 | 
						|
    // circle
 | 
						|
    arc[0] = arc[1] = Math.sqrt(squareSum / 2);
 | 
						|
    arc[2] = 0;
 | 
						|
  } else {
 | 
						|
    const majorAxisSqr = (squareSum + root) / 2;
 | 
						|
    const minorAxisSqr = (squareSum - root) / 2;
 | 
						|
    const major = Math.abs(majorAxisSqr - lastCol) > 1e-6;
 | 
						|
    const sub = (major ? majorAxisSqr : minorAxisSqr) - lastCol;
 | 
						|
    const rowsSum = m[0] * m[2] + m[1] * m[3];
 | 
						|
    const term1 = m[0] * sub + m[2] * rowsSum;
 | 
						|
    const term2 = m[1] * sub + m[3] * rowsSum;
 | 
						|
    arc[0] = Math.sqrt(majorAxisSqr);
 | 
						|
    arc[1] = Math.sqrt(minorAxisSqr);
 | 
						|
    arc[2] =
 | 
						|
      (((major ? term2 < 0 : term1 > 0) ? -1 : 1) *
 | 
						|
        Math.acos((major ? term1 : term2) / Math.hypot(term1, term2)) *
 | 
						|
        180) /
 | 
						|
      Math.PI;
 | 
						|
  }
 | 
						|
 | 
						|
  if (transform[0] < 0 !== transform[3] < 0) {
 | 
						|
    // Flip the sweep flag if coordinates are being flipped horizontally XOR vertically
 | 
						|
    arc[4] = 1 - arc[4];
 | 
						|
  }
 | 
						|
 | 
						|
  return arc;
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * Multiply transformation matrices.
 | 
						|
 *
 | 
						|
 * @type {(a: Array<number>, b: Array<number>) => Array<number>}
 | 
						|
 */
 | 
						|
const multiplyTransformMatrices = (a, b) => {
 | 
						|
  return [
 | 
						|
    a[0] * b[0] + a[2] * b[1],
 | 
						|
    a[1] * b[0] + a[3] * b[1],
 | 
						|
    a[0] * b[2] + a[2] * b[3],
 | 
						|
    a[1] * b[2] + a[3] * b[3],
 | 
						|
    a[0] * b[4] + a[2] * b[5] + a[4],
 | 
						|
    a[1] * b[4] + a[3] * b[5] + a[5],
 | 
						|
  ];
 | 
						|
};
 |