283 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			283 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| /**
 | |
|  * A Javascript implementation of AES Cipher Suites for TLS.
 | |
|  *
 | |
|  * @author Dave Longley
 | |
|  *
 | |
|  * Copyright (c) 2009-2015 Digital Bazaar, Inc.
 | |
|  *
 | |
|  */
 | |
| var forge = require('./forge');
 | |
| require('./aes');
 | |
| require('./tls');
 | |
| 
 | |
| var tls = module.exports = forge.tls;
 | |
| 
 | |
| /**
 | |
|  * Supported cipher suites.
 | |
|  */
 | |
| tls.CipherSuites['TLS_RSA_WITH_AES_128_CBC_SHA'] = {
 | |
|   id: [0x00, 0x2f],
 | |
|   name: 'TLS_RSA_WITH_AES_128_CBC_SHA',
 | |
|   initSecurityParameters: function(sp) {
 | |
|     sp.bulk_cipher_algorithm = tls.BulkCipherAlgorithm.aes;
 | |
|     sp.cipher_type = tls.CipherType.block;
 | |
|     sp.enc_key_length = 16;
 | |
|     sp.block_length = 16;
 | |
|     sp.fixed_iv_length = 16;
 | |
|     sp.record_iv_length = 16;
 | |
|     sp.mac_algorithm = tls.MACAlgorithm.hmac_sha1;
 | |
|     sp.mac_length = 20;
 | |
|     sp.mac_key_length = 20;
 | |
|   },
 | |
|   initConnectionState: initConnectionState
 | |
| };
 | |
| tls.CipherSuites['TLS_RSA_WITH_AES_256_CBC_SHA'] = {
 | |
|   id: [0x00, 0x35],
 | |
|   name: 'TLS_RSA_WITH_AES_256_CBC_SHA',
 | |
|   initSecurityParameters: function(sp) {
 | |
|     sp.bulk_cipher_algorithm = tls.BulkCipherAlgorithm.aes;
 | |
|     sp.cipher_type = tls.CipherType.block;
 | |
|     sp.enc_key_length = 32;
 | |
|     sp.block_length = 16;
 | |
|     sp.fixed_iv_length = 16;
 | |
|     sp.record_iv_length = 16;
 | |
|     sp.mac_algorithm = tls.MACAlgorithm.hmac_sha1;
 | |
|     sp.mac_length = 20;
 | |
|     sp.mac_key_length = 20;
 | |
|   },
 | |
|   initConnectionState: initConnectionState
 | |
| };
 | |
| 
 | |
| function initConnectionState(state, c, sp) {
 | |
|   var client = (c.entity === forge.tls.ConnectionEnd.client);
 | |
| 
 | |
|   // cipher setup
 | |
|   state.read.cipherState = {
 | |
|     init: false,
 | |
|     cipher: forge.cipher.createDecipher('AES-CBC', client ?
 | |
|       sp.keys.server_write_key : sp.keys.client_write_key),
 | |
|     iv: client ? sp.keys.server_write_IV : sp.keys.client_write_IV
 | |
|   };
 | |
|   state.write.cipherState = {
 | |
|     init: false,
 | |
|     cipher: forge.cipher.createCipher('AES-CBC', client ?
 | |
|       sp.keys.client_write_key : sp.keys.server_write_key),
 | |
|     iv: client ? sp.keys.client_write_IV : sp.keys.server_write_IV
 | |
|   };
 | |
|   state.read.cipherFunction = decrypt_aes_cbc_sha1;
 | |
|   state.write.cipherFunction = encrypt_aes_cbc_sha1;
 | |
| 
 | |
|   // MAC setup
 | |
|   state.read.macLength = state.write.macLength = sp.mac_length;
 | |
|   state.read.macFunction = state.write.macFunction = tls.hmac_sha1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Encrypts the TLSCompressed record into a TLSCipherText record using AES
 | |
|  * in CBC mode.
 | |
|  *
 | |
|  * @param record the TLSCompressed record to encrypt.
 | |
|  * @param s the ConnectionState to use.
 | |
|  *
 | |
|  * @return true on success, false on failure.
 | |
|  */
 | |
| function encrypt_aes_cbc_sha1(record, s) {
 | |
|   var rval = false;
 | |
| 
 | |
|   // append MAC to fragment, update sequence number
 | |
|   var mac = s.macFunction(s.macKey, s.sequenceNumber, record);
 | |
|   record.fragment.putBytes(mac);
 | |
|   s.updateSequenceNumber();
 | |
| 
 | |
|   // TLS 1.1+ use an explicit IV every time to protect against CBC attacks
 | |
|   var iv;
 | |
|   if(record.version.minor === tls.Versions.TLS_1_0.minor) {
 | |
|     // use the pre-generated IV when initializing for TLS 1.0, otherwise use
 | |
|     // the residue from the previous encryption
 | |
|     iv = s.cipherState.init ? null : s.cipherState.iv;
 | |
|   } else {
 | |
|     iv = forge.random.getBytesSync(16);
 | |
|   }
 | |
| 
 | |
|   s.cipherState.init = true;
 | |
| 
 | |
|   // start cipher
 | |
|   var cipher = s.cipherState.cipher;
 | |
|   cipher.start({iv: iv});
 | |
| 
 | |
|   // TLS 1.1+ write IV into output
 | |
|   if(record.version.minor >= tls.Versions.TLS_1_1.minor) {
 | |
|     cipher.output.putBytes(iv);
 | |
|   }
 | |
| 
 | |
|   // do encryption (default padding is appropriate)
 | |
|   cipher.update(record.fragment);
 | |
|   if(cipher.finish(encrypt_aes_cbc_sha1_padding)) {
 | |
|     // set record fragment to encrypted output
 | |
|     record.fragment = cipher.output;
 | |
|     record.length = record.fragment.length();
 | |
|     rval = true;
 | |
|   }
 | |
| 
 | |
|   return rval;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Handles padding for aes_cbc_sha1 in encrypt mode.
 | |
|  *
 | |
|  * @param blockSize the block size.
 | |
|  * @param input the input buffer.
 | |
|  * @param decrypt true in decrypt mode, false in encrypt mode.
 | |
|  *
 | |
|  * @return true on success, false on failure.
 | |
|  */
 | |
| function encrypt_aes_cbc_sha1_padding(blockSize, input, decrypt) {
 | |
|   /* The encrypted data length (TLSCiphertext.length) is one more than the sum
 | |
|    of SecurityParameters.block_length, TLSCompressed.length,
 | |
|    SecurityParameters.mac_length, and padding_length.
 | |
| 
 | |
|    The padding may be any length up to 255 bytes long, as long as it results in
 | |
|    the TLSCiphertext.length being an integral multiple of the block length.
 | |
|    Lengths longer than necessary might be desirable to frustrate attacks on a
 | |
|    protocol based on analysis of the lengths of exchanged messages. Each uint8
 | |
|    in the padding data vector must be filled with the padding length value.
 | |
| 
 | |
|    The padding length should be such that the total size of the
 | |
|    GenericBlockCipher structure is a multiple of the cipher's block length.
 | |
|    Legal values range from zero to 255, inclusive. This length specifies the
 | |
|    length of the padding field exclusive of the padding_length field itself.
 | |
| 
 | |
|    This is slightly different from PKCS#7 because the padding value is 1
 | |
|    less than the actual number of padding bytes if you include the
 | |
|    padding_length uint8 itself as a padding byte. */
 | |
|   if(!decrypt) {
 | |
|     // get the number of padding bytes required to reach the blockSize and
 | |
|     // subtract 1 for the padding value (to make room for the padding_length
 | |
|     // uint8)
 | |
|     var padding = blockSize - (input.length() % blockSize);
 | |
|     input.fillWithByte(padding - 1, padding);
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Handles padding for aes_cbc_sha1 in decrypt mode.
 | |
|  *
 | |
|  * @param blockSize the block size.
 | |
|  * @param output the output buffer.
 | |
|  * @param decrypt true in decrypt mode, false in encrypt mode.
 | |
|  *
 | |
|  * @return true on success, false on failure.
 | |
|  */
 | |
| function decrypt_aes_cbc_sha1_padding(blockSize, output, decrypt) {
 | |
|   var rval = true;
 | |
|   if(decrypt) {
 | |
|     /* The last byte in the output specifies the number of padding bytes not
 | |
|       including itself. Each of the padding bytes has the same value as that
 | |
|       last byte (known as the padding_length). Here we check all padding
 | |
|       bytes to ensure they have the value of padding_length even if one of
 | |
|       them is bad in order to ward-off timing attacks. */
 | |
|     var len = output.length();
 | |
|     var paddingLength = output.last();
 | |
|     for(var i = len - 1 - paddingLength; i < len - 1; ++i) {
 | |
|       rval = rval && (output.at(i) == paddingLength);
 | |
|     }
 | |
|     if(rval) {
 | |
|       // trim off padding bytes and last padding length byte
 | |
|       output.truncate(paddingLength + 1);
 | |
|     }
 | |
|   }
 | |
|   return rval;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Decrypts a TLSCipherText record into a TLSCompressed record using
 | |
|  * AES in CBC mode.
 | |
|  *
 | |
|  * @param record the TLSCipherText record to decrypt.
 | |
|  * @param s the ConnectionState to use.
 | |
|  *
 | |
|  * @return true on success, false on failure.
 | |
|  */
 | |
| function decrypt_aes_cbc_sha1(record, s) {
 | |
|   var rval = false;
 | |
| 
 | |
|   var iv;
 | |
|   if(record.version.minor === tls.Versions.TLS_1_0.minor) {
 | |
|     // use pre-generated IV when initializing for TLS 1.0, otherwise use the
 | |
|     // residue from the previous decryption
 | |
|     iv = s.cipherState.init ? null : s.cipherState.iv;
 | |
|   } else {
 | |
|     // TLS 1.1+ use an explicit IV every time to protect against CBC attacks
 | |
|     // that is appended to the record fragment
 | |
|     iv = record.fragment.getBytes(16);
 | |
|   }
 | |
| 
 | |
|   s.cipherState.init = true;
 | |
| 
 | |
|   // start cipher
 | |
|   var cipher = s.cipherState.cipher;
 | |
|   cipher.start({iv: iv});
 | |
| 
 | |
|   // do decryption
 | |
|   cipher.update(record.fragment);
 | |
|   rval = cipher.finish(decrypt_aes_cbc_sha1_padding);
 | |
| 
 | |
|   // even if decryption fails, keep going to minimize timing attacks
 | |
| 
 | |
|   // decrypted data:
 | |
|   // first (len - 20) bytes = application data
 | |
|   // last 20 bytes          = MAC
 | |
|   var macLen = s.macLength;
 | |
| 
 | |
|   // create a random MAC to check against should the mac length check fail
 | |
|   // Note: do this regardless of the failure to keep timing consistent
 | |
|   var mac = forge.random.getBytesSync(macLen);
 | |
| 
 | |
|   // get fragment and mac
 | |
|   var len = cipher.output.length();
 | |
|   if(len >= macLen) {
 | |
|     record.fragment = cipher.output.getBytes(len - macLen);
 | |
|     mac = cipher.output.getBytes(macLen);
 | |
|   } else {
 | |
|     // bad data, but get bytes anyway to try to keep timing consistent
 | |
|     record.fragment = cipher.output.getBytes();
 | |
|   }
 | |
|   record.fragment = forge.util.createBuffer(record.fragment);
 | |
|   record.length = record.fragment.length();
 | |
| 
 | |
|   // see if data integrity checks out, update sequence number
 | |
|   var mac2 = s.macFunction(s.macKey, s.sequenceNumber, record);
 | |
|   s.updateSequenceNumber();
 | |
|   rval = compareMacs(s.macKey, mac, mac2) && rval;
 | |
|   return rval;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Safely compare two MACs. This function will compare two MACs in a way
 | |
|  * that protects against timing attacks.
 | |
|  *
 | |
|  * TODO: Expose elsewhere as a utility API.
 | |
|  *
 | |
|  * See: https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/february/double-hmac-verification/
 | |
|  *
 | |
|  * @param key the MAC key to use.
 | |
|  * @param mac1 as a binary-encoded string of bytes.
 | |
|  * @param mac2 as a binary-encoded string of bytes.
 | |
|  *
 | |
|  * @return true if the MACs are the same, false if not.
 | |
|  */
 | |
| function compareMacs(key, mac1, mac2) {
 | |
|   var hmac = forge.hmac.create();
 | |
| 
 | |
|   hmac.start('SHA1', key);
 | |
|   hmac.update(mac1);
 | |
|   mac1 = hmac.digest().getBytes();
 | |
| 
 | |
|   hmac.start(null, null);
 | |
|   hmac.update(mac2);
 | |
|   mac2 = hmac.digest().getBytes();
 | |
| 
 | |
|   return mac1 === mac2;
 | |
| }
 |