900 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			900 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| /**
 | |
|  * @license Fraction.js v4.2.1 20/08/2023
 | |
|  * https://www.xarg.org/2014/03/rational-numbers-in-javascript/
 | |
|  *
 | |
|  * Copyright (c) 2023, Robert Eisele (robert@raw.org)
 | |
|  * Dual licensed under the MIT or GPL Version 2 licenses.
 | |
|  **/
 | |
| 
 | |
| 
 | |
| /**
 | |
|  *
 | |
|  * This class offers the possibility to calculate fractions.
 | |
|  * You can pass a fraction in different formats. Either as array, as double, as string or as an integer.
 | |
|  *
 | |
|  * Array/Object form
 | |
|  * [ 0 => <numerator>, 1 => <denominator> ]
 | |
|  * [ n => <numerator>, d => <denominator> ]
 | |
|  *
 | |
|  * Integer form
 | |
|  * - Single integer value
 | |
|  *
 | |
|  * Double form
 | |
|  * - Single double value
 | |
|  *
 | |
|  * String form
 | |
|  * 123.456 - a simple double
 | |
|  * 123/456 - a string fraction
 | |
|  * 123.'456' - a double with repeating decimal places
 | |
|  * 123.(456) - synonym
 | |
|  * 123.45'6' - a double with repeating last place
 | |
|  * 123.45(6) - synonym
 | |
|  *
 | |
|  * Example:
 | |
|  *
 | |
|  * let f = new Fraction("9.4'31'");
 | |
|  * f.mul([-4, 3]).div(4.9);
 | |
|  *
 | |
|  */
 | |
| 
 | |
| (function(root) {
 | |
| 
 | |
|   "use strict";
 | |
| 
 | |
|   // Set Identity function to downgrade BigInt to Number if needed
 | |
|   if (typeof BigInt === 'undefined') BigInt = function(n) { if (isNaN(n)) throw new Error(""); return n; };
 | |
| 
 | |
|   const C_ONE = BigInt(1);
 | |
|   const C_ZERO = BigInt(0);
 | |
|   const C_TEN = BigInt(10);
 | |
|   const C_TWO = BigInt(2);
 | |
|   const C_FIVE = BigInt(5);
 | |
| 
 | |
|   // Maximum search depth for cyclic rational numbers. 2000 should be more than enough.
 | |
|   // Example: 1/7 = 0.(142857) has 6 repeating decimal places.
 | |
|   // If MAX_CYCLE_LEN gets reduced, long cycles will not be detected and toString() only gets the first 10 digits
 | |
|   const MAX_CYCLE_LEN = 2000;
 | |
| 
 | |
|   // Parsed data to avoid calling "new" all the time
 | |
|   const P = {
 | |
|     "s": C_ONE,
 | |
|     "n": C_ZERO,
 | |
|     "d": C_ONE
 | |
|   };
 | |
| 
 | |
|   function assign(n, s) {
 | |
| 
 | |
|     try {
 | |
|       n = BigInt(n);
 | |
|     } catch (e) {
 | |
|       throw InvalidParameter();
 | |
|     }
 | |
|     return n * s;
 | |
|   }
 | |
| 
 | |
|   // Creates a new Fraction internally without the need of the bulky constructor
 | |
|   function newFraction(n, d) {
 | |
| 
 | |
|     if (d === C_ZERO) {
 | |
|       throw DivisionByZero();
 | |
|     }
 | |
| 
 | |
|     const f = Object.create(Fraction.prototype);
 | |
|     f["s"] = n < C_ZERO ? -C_ONE : C_ONE;
 | |
| 
 | |
|     n = n < C_ZERO ? -n : n;
 | |
| 
 | |
|     const a = gcd(n, d);
 | |
| 
 | |
|     f["n"] = n / a;
 | |
|     f["d"] = d / a;
 | |
|     return f;
 | |
|   }
 | |
| 
 | |
|   function factorize(num) {
 | |
| 
 | |
|     const factors = {};
 | |
| 
 | |
|     let n = num;
 | |
|     let i = C_TWO;
 | |
|     let s = C_FIVE - C_ONE;
 | |
| 
 | |
|     while (s <= n) {
 | |
| 
 | |
|       while (n % i === C_ZERO) {
 | |
|         n/= i;
 | |
|         factors[i] = (factors[i] || C_ZERO) + C_ONE;
 | |
|       }
 | |
|       s+= C_ONE + C_TWO * i++;
 | |
|     }
 | |
| 
 | |
|     if (n !== num) {
 | |
|       if (n > 1)
 | |
|         factors[n] = (factors[n] || C_ZERO) + C_ONE;
 | |
|     } else {
 | |
|       factors[num] = (factors[num] || C_ZERO) + C_ONE;
 | |
|     }
 | |
|     return factors;
 | |
|   }
 | |
| 
 | |
|   const parse = function(p1, p2) {
 | |
| 
 | |
|     let n = C_ZERO, d = C_ONE, s = C_ONE;
 | |
| 
 | |
|     if (p1 === undefined || p1 === null) {
 | |
|       /* void */
 | |
|     } else if (p2 !== undefined) {
 | |
|       n = BigInt(p1);
 | |
|       d = BigInt(p2);
 | |
|       s = n * d;
 | |
| 
 | |
|       if (n % C_ONE !== C_ZERO || d % C_ONE !== C_ZERO) {
 | |
|         throw NonIntegerParameter();
 | |
|       }
 | |
| 
 | |
|     } else if (typeof p1 === "object") {
 | |
|       if ("d" in p1 && "n" in p1) {
 | |
|         n = BigInt(p1["n"]);
 | |
|         d = BigInt(p1["d"]);
 | |
|         if ("s" in p1)
 | |
|           n*= BigInt(p1["s"]);
 | |
|       } else if (0 in p1) {
 | |
|         n = BigInt(p1[0]);
 | |
|         if (1 in p1)
 | |
|           d = BigInt(p1[1]);
 | |
|       } else if (p1 instanceof BigInt) {
 | |
|         n = BigInt(p1);
 | |
|       } else {
 | |
|         throw InvalidParameter();
 | |
|       }
 | |
|       s = n * d;
 | |
|     } else if (typeof p1 === "bigint") {
 | |
|       n = p1;
 | |
|       s = p1;
 | |
|       d = C_ONE;
 | |
|     } else if (typeof p1 === "number") {
 | |
| 
 | |
|       if (isNaN(p1)) {
 | |
|         throw InvalidParameter();
 | |
|       }
 | |
| 
 | |
|       if (p1 < 0) {
 | |
|         s = -C_ONE;
 | |
|         p1 = -p1;
 | |
|       }
 | |
| 
 | |
|       if (p1 % 1 === 0) {
 | |
|         n = BigInt(p1);
 | |
|       } else if (p1 > 0) { // check for != 0, scale would become NaN (log(0)), which converges really slow
 | |
| 
 | |
|         let z = 1;
 | |
| 
 | |
|         let A = 0, B = 1;
 | |
|         let C = 1, D = 1;
 | |
| 
 | |
|         let N = 10000000;
 | |
| 
 | |
|         if (p1 >= 1) {
 | |
|           z = 10 ** Math.floor(1 + Math.log10(p1));
 | |
|           p1/= z;
 | |
|         }
 | |
| 
 | |
|         // Using Farey Sequences
 | |
| 
 | |
|         while (B <= N && D <= N) {
 | |
|           let M = (A + C) / (B + D);
 | |
| 
 | |
|           if (p1 === M) {
 | |
|             if (B + D <= N) {
 | |
|               n = A + C;
 | |
|               d = B + D;
 | |
|             } else if (D > B) {
 | |
|               n = C;
 | |
|               d = D;
 | |
|             } else {
 | |
|               n = A;
 | |
|               d = B;
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|           } else {
 | |
| 
 | |
|             if (p1 > M) {
 | |
|               A+= C;
 | |
|               B+= D;
 | |
|             } else {
 | |
|               C+= A;
 | |
|               D+= B;
 | |
|             }
 | |
| 
 | |
|             if (B > N) {
 | |
|               n = C;
 | |
|               d = D;
 | |
|             } else {
 | |
|               n = A;
 | |
|               d = B;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|         n = BigInt(n) * BigInt(z);
 | |
|         d = BigInt(d);
 | |
| 
 | |
|       }
 | |
| 
 | |
|     } else if (typeof p1 === "string") {
 | |
| 
 | |
|       let ndx = 0;
 | |
| 
 | |
|       let v = C_ZERO, w = C_ZERO, x = C_ZERO, y = C_ONE, z = C_ONE;
 | |
| 
 | |
|       let match = p1.match(/\d+|./g);
 | |
| 
 | |
|       if (match === null)
 | |
|         throw InvalidParameter();
 | |
| 
 | |
|       if (match[ndx] === '-') {// Check for minus sign at the beginning
 | |
|         s = -C_ONE;
 | |
|         ndx++;
 | |
|       } else if (match[ndx] === '+') {// Check for plus sign at the beginning
 | |
|         ndx++;
 | |
|       }
 | |
| 
 | |
|       if (match.length === ndx + 1) { // Check if it's just a simple number "1234"
 | |
|         w = assign(match[ndx++], s);
 | |
|       } else if (match[ndx + 1] === '.' || match[ndx] === '.') { // Check if it's a decimal number
 | |
| 
 | |
|         if (match[ndx] !== '.') { // Handle 0.5 and .5
 | |
|           v = assign(match[ndx++], s);
 | |
|         }
 | |
|         ndx++;
 | |
| 
 | |
|         // Check for decimal places
 | |
|         if (ndx + 1 === match.length || match[ndx + 1] === '(' && match[ndx + 3] === ')' || match[ndx + 1] === "'" && match[ndx + 3] === "'") {
 | |
|           w = assign(match[ndx], s);
 | |
|           y = C_TEN ** BigInt(match[ndx].length);
 | |
|           ndx++;
 | |
|         }
 | |
| 
 | |
|         // Check for repeating places
 | |
|         if (match[ndx] === '(' && match[ndx + 2] === ')' || match[ndx] === "'" && match[ndx + 2] === "'") {
 | |
|           x = assign(match[ndx + 1], s);
 | |
|           z = C_TEN ** BigInt(match[ndx + 1].length) - C_ONE;
 | |
|           ndx+= 3;
 | |
|         }
 | |
| 
 | |
|       } else if (match[ndx + 1] === '/' || match[ndx + 1] === ':') { // Check for a simple fraction "123/456" or "123:456"
 | |
|         w = assign(match[ndx], s);
 | |
|         y = assign(match[ndx + 2], C_ONE);
 | |
|         ndx+= 3;
 | |
|       } else if (match[ndx + 3] === '/' && match[ndx + 1] === ' ') { // Check for a complex fraction "123 1/2"
 | |
|         v = assign(match[ndx], s);
 | |
|         w = assign(match[ndx + 2], s);
 | |
|         y = assign(match[ndx + 4], C_ONE);
 | |
|         ndx+= 5;
 | |
|       }
 | |
| 
 | |
|       if (match.length <= ndx) { // Check for more tokens on the stack
 | |
|         d = y * z;
 | |
|         s = /* void */
 | |
|         n = x + d * v + z * w;
 | |
|       } else {
 | |
|         throw InvalidParameter();
 | |
|       }
 | |
| 
 | |
|     } else {
 | |
|       throw InvalidParameter();
 | |
|     }
 | |
| 
 | |
|     if (d === C_ZERO) {
 | |
|       throw DivisionByZero();
 | |
|     }
 | |
| 
 | |
|     P["s"] = s < C_ZERO ? -C_ONE : C_ONE;
 | |
|     P["n"] = n < C_ZERO ? -n : n;
 | |
|     P["d"] = d < C_ZERO ? -d : d;
 | |
|   };
 | |
| 
 | |
|   function modpow(b, e, m) {
 | |
| 
 | |
|     let r = C_ONE;
 | |
|     for (; e > C_ZERO; b = (b * b) % m, e >>= C_ONE) {
 | |
| 
 | |
|       if (e & C_ONE) {
 | |
|         r = (r * b) % m;
 | |
|       }
 | |
|     }
 | |
|     return r;
 | |
|   }
 | |
| 
 | |
|   function cycleLen(n, d) {
 | |
| 
 | |
|     for (; d % C_TWO === C_ZERO;
 | |
|       d/= C_TWO) {
 | |
|     }
 | |
| 
 | |
|     for (; d % C_FIVE === C_ZERO;
 | |
|       d/= C_FIVE) {
 | |
|     }
 | |
| 
 | |
|     if (d === C_ONE) // Catch non-cyclic numbers
 | |
|       return C_ZERO;
 | |
| 
 | |
|     // If we would like to compute really large numbers quicker, we could make use of Fermat's little theorem:
 | |
|     // 10^(d-1) % d == 1
 | |
|     // However, we don't need such large numbers and MAX_CYCLE_LEN should be the capstone,
 | |
|     // as we want to translate the numbers to strings.
 | |
| 
 | |
|     let rem = C_TEN % d;
 | |
|     let t = 1;
 | |
| 
 | |
|     for (; rem !== C_ONE; t++) {
 | |
|       rem = rem * C_TEN % d;
 | |
| 
 | |
|       if (t > MAX_CYCLE_LEN)
 | |
|         return C_ZERO; // Returning 0 here means that we don't print it as a cyclic number. It's likely that the answer is `d-1`
 | |
|     }
 | |
|     return BigInt(t);
 | |
|   }
 | |
| 
 | |
|   function cycleStart(n, d, len) {
 | |
| 
 | |
|     let rem1 = C_ONE;
 | |
|     let rem2 = modpow(C_TEN, len, d);
 | |
| 
 | |
|     for (let t = 0; t < 300; t++) { // s < ~log10(Number.MAX_VALUE)
 | |
|       // Solve 10^s == 10^(s+t) (mod d)
 | |
| 
 | |
|       if (rem1 === rem2)
 | |
|         return BigInt(t);
 | |
| 
 | |
|       rem1 = rem1 * C_TEN % d;
 | |
|       rem2 = rem2 * C_TEN % d;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   function gcd(a, b) {
 | |
| 
 | |
|     if (!a)
 | |
|       return b;
 | |
|     if (!b)
 | |
|       return a;
 | |
| 
 | |
|     while (1) {
 | |
|       a%= b;
 | |
|       if (!a)
 | |
|         return b;
 | |
|       b%= a;
 | |
|       if (!b)
 | |
|         return a;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   /**
 | |
|    * Module constructor
 | |
|    *
 | |
|    * @constructor
 | |
|    * @param {number|Fraction=} a
 | |
|    * @param {number=} b
 | |
|    */
 | |
|   function Fraction(a, b) {
 | |
| 
 | |
|     parse(a, b);
 | |
| 
 | |
|     if (this instanceof Fraction) {
 | |
|       a = gcd(P["d"], P["n"]); // Abuse a
 | |
|       this["s"] = P["s"];
 | |
|       this["n"] = P["n"] / a;
 | |
|       this["d"] = P["d"] / a;
 | |
|     } else {
 | |
|       return newFraction(P['s'] * P['n'], P['d']);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   var DivisionByZero = function() {return new Error("Division by Zero");};
 | |
|   var InvalidParameter = function() {return new Error("Invalid argument");};
 | |
|   var NonIntegerParameter = function() {return new Error("Parameters must be integer");};
 | |
| 
 | |
|   Fraction.prototype = {
 | |
| 
 | |
|     "s": C_ONE,
 | |
|     "n": C_ZERO,
 | |
|     "d": C_ONE,
 | |
| 
 | |
|     /**
 | |
|      * Calculates the absolute value
 | |
|      *
 | |
|      * Ex: new Fraction(-4).abs() => 4
 | |
|      **/
 | |
|     "abs": function() {
 | |
| 
 | |
|       return newFraction(this["n"], this["d"]);
 | |
|     },
 | |
| 
 | |
|     /**
 | |
|      * Inverts the sign of the current fraction
 | |
|      *
 | |
|      * Ex: new Fraction(-4).neg() => 4
 | |
|      **/
 | |
|     "neg": function() {
 | |
| 
 | |
|       return newFraction(-this["s"] * this["n"], this["d"]);
 | |
|     },
 | |
| 
 | |
|     /**
 | |
|      * Adds two rational numbers
 | |
|      *
 | |
|      * Ex: new Fraction({n: 2, d: 3}).add("14.9") => 467 / 30
 | |
|      **/
 | |
|     "add": function(a, b) {
 | |
| 
 | |
|       parse(a, b);
 | |
|       return newFraction(
 | |
|         this["s"] * this["n"] * P["d"] + P["s"] * this["d"] * P["n"],
 | |
|         this["d"] * P["d"]
 | |
|       );
 | |
|     },
 | |
| 
 | |
|     /**
 | |
|      * Subtracts two rational numbers
 | |
|      *
 | |
|      * Ex: new Fraction({n: 2, d: 3}).add("14.9") => -427 / 30
 | |
|      **/
 | |
|     "sub": function(a, b) {
 | |
| 
 | |
|       parse(a, b);
 | |
|       return newFraction(
 | |
|         this["s"] * this["n"] * P["d"] - P["s"] * this["d"] * P["n"],
 | |
|         this["d"] * P["d"]
 | |
|       );
 | |
|     },
 | |
| 
 | |
|     /**
 | |
|      * Multiplies two rational numbers
 | |
|      *
 | |
|      * Ex: new Fraction("-17.(345)").mul(3) => 5776 / 111
 | |
|      **/
 | |
|     "mul": function(a, b) {
 | |
| 
 | |
|       parse(a, b);
 | |
|       return newFraction(
 | |
|         this["s"] * P["s"] * this["n"] * P["n"],
 | |
|         this["d"] * P["d"]
 | |
|       );
 | |
|     },
 | |
| 
 | |
|     /**
 | |
|      * Divides two rational numbers
 | |
|      *
 | |
|      * Ex: new Fraction("-17.(345)").inverse().div(3)
 | |
|      **/
 | |
|     "div": function(a, b) {
 | |
| 
 | |
|       parse(a, b);
 | |
|       return newFraction(
 | |
|         this["s"] * P["s"] * this["n"] * P["d"],
 | |
|         this["d"] * P["n"]
 | |
|       );
 | |
|     },
 | |
| 
 | |
|     /**
 | |
|      * Clones the actual object
 | |
|      *
 | |
|      * Ex: new Fraction("-17.(345)").clone()
 | |
|      **/
 | |
|     "clone": function() {
 | |
|       return newFraction(this['s'] * this['n'], this['d']);
 | |
|     },
 | |
| 
 | |
|     /**
 | |
|      * Calculates the modulo of two rational numbers - a more precise fmod
 | |
|      *
 | |
|      * Ex: new Fraction('4.(3)').mod([7, 8]) => (13/3) % (7/8) = (5/6)
 | |
|      **/
 | |
|     "mod": function(a, b) {
 | |
| 
 | |
|       if (a === undefined) {
 | |
|         return newFraction(this["s"] * this["n"] % this["d"], C_ONE);
 | |
|       }
 | |
| 
 | |
|       parse(a, b);
 | |
|       if (0 === P["n"] && 0 === this["d"]) {
 | |
|         throw DivisionByZero();
 | |
|       }
 | |
| 
 | |
|       /*
 | |
|        * First silly attempt, kinda slow
 | |
|        *
 | |
|        return that["sub"]({
 | |
|        "n": num["n"] * Math.floor((this.n / this.d) / (num.n / num.d)),
 | |
|        "d": num["d"],
 | |
|        "s": this["s"]
 | |
|        });*/
 | |
| 
 | |
|       /*
 | |
|        * New attempt: a1 / b1 = a2 / b2 * q + r
 | |
|        * => b2 * a1 = a2 * b1 * q + b1 * b2 * r
 | |
|        * => (b2 * a1 % a2 * b1) / (b1 * b2)
 | |
|        */
 | |
|       return newFraction(
 | |
|         this["s"] * (P["d"] * this["n"]) % (P["n"] * this["d"]),
 | |
|         P["d"] * this["d"]
 | |
|       );
 | |
|     },
 | |
| 
 | |
|     /**
 | |
|      * Calculates the fractional gcd of two rational numbers
 | |
|      *
 | |
|      * Ex: new Fraction(5,8).gcd(3,7) => 1/56
 | |
|      */
 | |
|     "gcd": function(a, b) {
 | |
| 
 | |
|       parse(a, b);
 | |
| 
 | |
|       // gcd(a / b, c / d) = gcd(a, c) / lcm(b, d)
 | |
| 
 | |
|       return newFraction(gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]), P["d"] * this["d"]);
 | |
|     },
 | |
| 
 | |
|     /**
 | |
|      * Calculates the fractional lcm of two rational numbers
 | |
|      *
 | |
|      * Ex: new Fraction(5,8).lcm(3,7) => 15
 | |
|      */
 | |
|     "lcm": function(a, b) {
 | |
| 
 | |
|       parse(a, b);
 | |
| 
 | |
|       // lcm(a / b, c / d) = lcm(a, c) / gcd(b, d)
 | |
| 
 | |
|       if (P["n"] === C_ZERO && this["n"] === C_ZERO) {
 | |
|         return newFraction(C_ZERO, C_ONE);
 | |
|       }
 | |
|       return newFraction(P["n"] * this["n"], gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]));
 | |
|     },
 | |
| 
 | |
|     /**
 | |
|      * Gets the inverse of the fraction, means numerator and denominator are exchanged
 | |
|      *
 | |
|      * Ex: new Fraction([-3, 4]).inverse() => -4 / 3
 | |
|      **/
 | |
|     "inverse": function() {
 | |
|       return newFraction(this["s"] * this["d"], this["n"]);
 | |
|     },
 | |
| 
 | |
|     /**
 | |
|      * Calculates the fraction to some integer exponent
 | |
|      *
 | |
|      * Ex: new Fraction(-1,2).pow(-3) => -8
 | |
|      */
 | |
|     "pow": function(a, b) {
 | |
| 
 | |
|       parse(a, b);
 | |
| 
 | |
|       // Trivial case when exp is an integer
 | |
| 
 | |
|       if (P['d'] === C_ONE) {
 | |
| 
 | |
|         if (P['s'] < C_ZERO) {
 | |
|           return newFraction((this['s'] * this["d"]) ** P['n'], this["n"] ** P['n']);
 | |
|         } else {
 | |
|           return newFraction((this['s'] * this["n"]) ** P['n'], this["d"] ** P['n']);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Negative roots become complex
 | |
|       //     (-a/b)^(c/d) = x
 | |
|       // <=> (-1)^(c/d) * (a/b)^(c/d) = x
 | |
|       // <=> (cos(pi) + i*sin(pi))^(c/d) * (a/b)^(c/d) = x
 | |
|       // <=> (cos(c*pi/d) + i*sin(c*pi/d)) * (a/b)^(c/d) = x       # DeMoivre's formula
 | |
|       // From which follows that only for c=0 the root is non-complex
 | |
|       if (this['s'] < C_ZERO) return null;
 | |
| 
 | |
|       // Now prime factor n and d
 | |
|       let N = factorize(this['n']);
 | |
|       let D = factorize(this['d']);
 | |
| 
 | |
|       // Exponentiate and take root for n and d individually
 | |
|       let n = C_ONE;
 | |
|       let d = C_ONE;
 | |
|       for (let k in N) {
 | |
|         if (k === '1') continue;
 | |
|         if (k === '0') {
 | |
|           n = C_ZERO;
 | |
|           break;
 | |
|         }
 | |
|         N[k]*= P['n'];
 | |
| 
 | |
|         if (N[k] % P['d'] === C_ZERO) {
 | |
|           N[k]/= P['d'];
 | |
|         } else return null;
 | |
|         n*= BigInt(k) ** N[k];
 | |
|       }
 | |
| 
 | |
|       for (let k in D) {
 | |
|         if (k === '1') continue;
 | |
|         D[k]*= P['n'];
 | |
| 
 | |
|         if (D[k] % P['d'] === C_ZERO) {
 | |
|           D[k]/= P['d'];
 | |
|         } else return null;
 | |
|         d*= BigInt(k) ** D[k];
 | |
|       }
 | |
| 
 | |
|       if (P['s'] < C_ZERO) {
 | |
|         return newFraction(d, n);
 | |
|       }
 | |
|       return newFraction(n, d);
 | |
|     },
 | |
| 
 | |
|     /**
 | |
|      * Check if two rational numbers are the same
 | |
|      *
 | |
|      * Ex: new Fraction(19.6).equals([98, 5]);
 | |
|      **/
 | |
|     "equals": function(a, b) {
 | |
| 
 | |
|       parse(a, b);
 | |
|       return this["s"] * this["n"] * P["d"] === P["s"] * P["n"] * this["d"]; // Same as compare() === 0
 | |
|     },
 | |
| 
 | |
|     /**
 | |
|      * Check if two rational numbers are the same
 | |
|      *
 | |
|      * Ex: new Fraction(19.6).equals([98, 5]);
 | |
|      **/
 | |
|     "compare": function(a, b) {
 | |
| 
 | |
|       parse(a, b);
 | |
|       let t = (this["s"] * this["n"] * P["d"] - P["s"] * P["n"] * this["d"]);
 | |
| 
 | |
|       return (C_ZERO < t) - (t < C_ZERO);
 | |
|     },
 | |
| 
 | |
|     /**
 | |
|      * Calculates the ceil of a rational number
 | |
|      *
 | |
|      * Ex: new Fraction('4.(3)').ceil() => (5 / 1)
 | |
|      **/
 | |
|     "ceil": function(places) {
 | |
| 
 | |
|       places = C_TEN ** BigInt(places || 0);
 | |
| 
 | |
|       return newFraction(this["s"] * places * this["n"] / this["d"] +
 | |
|         (places * this["n"] % this["d"] > C_ZERO && this["s"] >= C_ZERO ? C_ONE : C_ZERO),
 | |
|         places);
 | |
|     },
 | |
| 
 | |
|     /**
 | |
|      * Calculates the floor of a rational number
 | |
|      *
 | |
|      * Ex: new Fraction('4.(3)').floor() => (4 / 1)
 | |
|      **/
 | |
|     "floor": function(places) {
 | |
| 
 | |
|       places = C_TEN ** BigInt(places || 0);
 | |
| 
 | |
|       return newFraction(this["s"] * places * this["n"] / this["d"] -
 | |
|         (places * this["n"] % this["d"] > C_ZERO && this["s"] < C_ZERO ? C_ONE : C_ZERO),
 | |
|         places);
 | |
|     },
 | |
| 
 | |
|     /**
 | |
|      * Rounds a rational numbers
 | |
|      *
 | |
|      * Ex: new Fraction('4.(3)').round() => (4 / 1)
 | |
|      **/
 | |
|     "round": function(places) {
 | |
| 
 | |
|       places = C_TEN ** BigInt(places || 0);
 | |
| 
 | |
|       /* Derivation:
 | |
| 
 | |
|       s >= 0:
 | |
|         round(n / d) = trunc(n / d) + (n % d) / d >= 0.5 ? 1 : 0
 | |
|                      = trunc(n / d) + 2(n % d) >= d ? 1 : 0
 | |
|       s < 0:
 | |
|         round(n / d) =-trunc(n / d) - (n % d) / d > 0.5 ? 1 : 0
 | |
|                      =-trunc(n / d) - 2(n % d) > d ? 1 : 0
 | |
| 
 | |
|       =>:
 | |
| 
 | |
|       round(s * n / d) = s * trunc(n / d) + s * (C + 2(n % d) > d ? 1 : 0)
 | |
|           where C = s >= 0 ? 1 : 0, to fix the >= for the positve case.
 | |
|       */
 | |
| 
 | |
|       return newFraction(this["s"] * places * this["n"] / this["d"] +
 | |
|         this["s"] * ((this["s"] >= C_ZERO ? C_ONE : C_ZERO) + C_TWO * (places * this["n"] % this["d"]) > this["d"] ? C_ONE : C_ZERO),
 | |
|         places);
 | |
|     },
 | |
| 
 | |
|     /**
 | |
|      * Check if two rational numbers are divisible
 | |
|      *
 | |
|      * Ex: new Fraction(19.6).divisible(1.5);
 | |
|      */
 | |
|     "divisible": function(a, b) {
 | |
| 
 | |
|       parse(a, b);
 | |
|       return !(!(P["n"] * this["d"]) || ((this["n"] * P["d"]) % (P["n"] * this["d"])));
 | |
|     },
 | |
| 
 | |
|     /**
 | |
|      * Returns a decimal representation of the fraction
 | |
|      *
 | |
|      * Ex: new Fraction("100.'91823'").valueOf() => 100.91823918239183
 | |
|      **/
 | |
|     'valueOf': function() {
 | |
|       // Best we can do so far
 | |
|       return Number(this["s"] * this["n"]) / Number(this["d"]);
 | |
|     },
 | |
| 
 | |
|     /**
 | |
|      * Creates a string representation of a fraction with all digits
 | |
|      *
 | |
|      * Ex: new Fraction("100.'91823'").toString() => "100.(91823)"
 | |
|      **/
 | |
|     'toString': function(dec) {
 | |
| 
 | |
|       let N = this["n"];
 | |
|       let D = this["d"];
 | |
| 
 | |
|       function trunc(x) {
 | |
|           return typeof x === 'bigint' ? x : Math.floor(x);
 | |
|       }
 | |
| 
 | |
|       dec = dec || 15; // 15 = decimal places when no repetition
 | |
| 
 | |
|       let cycLen = cycleLen(N, D); // Cycle length
 | |
|       let cycOff = cycleStart(N, D, cycLen); // Cycle start
 | |
| 
 | |
|       let str = this['s'] < C_ZERO ? "-" : "";
 | |
| 
 | |
|       // Append integer part
 | |
|       str+= trunc(N / D);
 | |
| 
 | |
|       N%= D;
 | |
|       N*= C_TEN;
 | |
| 
 | |
|       if (N)
 | |
|         str+= ".";
 | |
| 
 | |
|       if (cycLen) {
 | |
| 
 | |
|         for (let i = cycOff; i--;) {
 | |
|           str+= trunc(N / D);
 | |
|           N%= D;
 | |
|           N*= C_TEN;
 | |
|         }
 | |
|         str+= "(";
 | |
|         for (let i = cycLen; i--;) {
 | |
|           str+= trunc(N / D);
 | |
|           N%= D;
 | |
|           N*= C_TEN;
 | |
|         }
 | |
|         str+= ")";
 | |
|       } else {
 | |
|         for (let i = dec; N && i--;) {
 | |
|           str+= trunc(N / D);
 | |
|           N%= D;
 | |
|           N*= C_TEN;
 | |
|         }
 | |
|       }
 | |
|       return str;
 | |
|     },
 | |
| 
 | |
|     /**
 | |
|      * Returns a string-fraction representation of a Fraction object
 | |
|      *
 | |
|      * Ex: new Fraction("1.'3'").toFraction() => "4 1/3"
 | |
|      **/
 | |
|     'toFraction': function(excludeWhole) {
 | |
| 
 | |
|       let n = this["n"];
 | |
|       let d = this["d"];
 | |
|       let str = this['s'] < C_ZERO ? "-" : "";
 | |
| 
 | |
|       if (d === C_ONE) {
 | |
|         str+= n;
 | |
|       } else {
 | |
|         let whole = n / d;
 | |
|         if (excludeWhole && whole > C_ZERO) {
 | |
|           str+= whole;
 | |
|           str+= " ";
 | |
|           n%= d;
 | |
|         }
 | |
| 
 | |
|         str+= n;
 | |
|         str+= '/';
 | |
|         str+= d;
 | |
|       }
 | |
|       return str;
 | |
|     },
 | |
| 
 | |
|     /**
 | |
|      * Returns a latex representation of a Fraction object
 | |
|      *
 | |
|      * Ex: new Fraction("1.'3'").toLatex() => "\frac{4}{3}"
 | |
|      **/
 | |
|     'toLatex': function(excludeWhole) {
 | |
| 
 | |
|       let n = this["n"];
 | |
|       let d = this["d"];
 | |
|       let str = this['s'] < C_ZERO ? "-" : "";
 | |
| 
 | |
|       if (d === C_ONE) {
 | |
|         str+= n;
 | |
|       } else {
 | |
|         let whole = n / d;
 | |
|         if (excludeWhole && whole > C_ZERO) {
 | |
|           str+= whole;
 | |
|           n%= d;
 | |
|         }
 | |
| 
 | |
|         str+= "\\frac{";
 | |
|         str+= n;
 | |
|         str+= '}{';
 | |
|         str+= d;
 | |
|         str+= '}';
 | |
|       }
 | |
|       return str;
 | |
|     },
 | |
| 
 | |
|     /**
 | |
|      * Returns an array of continued fraction elements
 | |
|      *
 | |
|      * Ex: new Fraction("7/8").toContinued() => [0,1,7]
 | |
|      */
 | |
|     'toContinued': function() {
 | |
| 
 | |
|       let a = this['n'];
 | |
|       let b = this['d'];
 | |
|       let res = [];
 | |
| 
 | |
|       do {
 | |
|         res.push(a / b);
 | |
|         let t = a % b;
 | |
|         a = b;
 | |
|         b = t;
 | |
|       } while (a !== C_ONE);
 | |
| 
 | |
|       return res;
 | |
|     },
 | |
| 
 | |
|     "simplify": function(eps) {
 | |
| 
 | |
|       eps = eps || 0.001;
 | |
| 
 | |
|       const thisABS = this['abs']();
 | |
|       const cont = thisABS['toContinued']();
 | |
| 
 | |
|       for (let i = 1; i < cont.length; i++) {
 | |
| 
 | |
|         let s = newFraction(cont[i - 1], C_ONE);
 | |
|         for (let k = i - 2; k >= 0; k--) {
 | |
|           s = s['inverse']()['add'](cont[k]);
 | |
|         }
 | |
| 
 | |
|         if (Math.abs(s['sub'](thisABS).valueOf()) < eps) {
 | |
|           return s['mul'](this['s']);
 | |
|         }
 | |
|       }
 | |
|       return this;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   if (typeof define === "function" && define["amd"]) {
 | |
|     define([], function() {
 | |
|       return Fraction;
 | |
|     });
 | |
|   } else if (typeof exports === "object") {
 | |
|     Object.defineProperty(exports, "__esModule", { 'value': true });
 | |
|     Fraction['default'] = Fraction;
 | |
|     Fraction['Fraction'] = Fraction;
 | |
|     module['exports'] = Fraction;
 | |
|   } else {
 | |
|     root['Fraction'] = Fraction;
 | |
|   }
 | |
| 
 | |
| })(this);
 |