817 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
			
		
		
	
	
			817 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
| 'use strict';
 | |
| 
 | |
| /**
 | |
|  * @typedef {import('../lib/types').XastElement} XastElement
 | |
|  * @typedef {import('../lib/types').PathDataItem} PathDataItem
 | |
|  */
 | |
| 
 | |
| const { parsePathData, stringifyPathData } = require('../lib/path.js');
 | |
| 
 | |
| /**
 | |
|  * @type {[number, number]}
 | |
|  */
 | |
| var prevCtrlPoint;
 | |
| 
 | |
| /**
 | |
|  * Convert path string to JS representation.
 | |
|  *
 | |
|  * @type {(path: XastElement) => Array<PathDataItem>}
 | |
|  */
 | |
| const path2js = (path) => {
 | |
|   // @ts-ignore legacy
 | |
|   if (path.pathJS) return path.pathJS;
 | |
|   /**
 | |
|    * @type {Array<PathDataItem>}
 | |
|    */
 | |
|   const pathData = []; // JS representation of the path data
 | |
|   const newPathData = parsePathData(path.attributes.d);
 | |
|   for (const { command, args } of newPathData) {
 | |
|     pathData.push({ command, args });
 | |
|   }
 | |
|   // First moveto is actually absolute. Subsequent coordinates were separated above.
 | |
|   if (pathData.length && pathData[0].command == 'm') {
 | |
|     pathData[0].command = 'M';
 | |
|   }
 | |
|   // @ts-ignore legacy
 | |
|   path.pathJS = pathData;
 | |
|   return pathData;
 | |
| };
 | |
| exports.path2js = path2js;
 | |
| 
 | |
| /**
 | |
|  * Convert relative Path data to absolute.
 | |
|  *
 | |
|  * @type {(data: Array<PathDataItem>) => Array<PathDataItem>}
 | |
|  *
 | |
|  */
 | |
| const convertRelativeToAbsolute = (data) => {
 | |
|   /**
 | |
|    * @type {Array<PathDataItem>}
 | |
|    */
 | |
|   const newData = [];
 | |
|   let start = [0, 0];
 | |
|   let cursor = [0, 0];
 | |
| 
 | |
|   for (let { command, args } of data) {
 | |
|     args = args.slice();
 | |
| 
 | |
|     // moveto (x y)
 | |
|     if (command === 'm') {
 | |
|       args[0] += cursor[0];
 | |
|       args[1] += cursor[1];
 | |
|       command = 'M';
 | |
|     }
 | |
|     if (command === 'M') {
 | |
|       cursor[0] = args[0];
 | |
|       cursor[1] = args[1];
 | |
|       start[0] = cursor[0];
 | |
|       start[1] = cursor[1];
 | |
|     }
 | |
| 
 | |
|     // horizontal lineto (x)
 | |
|     if (command === 'h') {
 | |
|       args[0] += cursor[0];
 | |
|       command = 'H';
 | |
|     }
 | |
|     if (command === 'H') {
 | |
|       cursor[0] = args[0];
 | |
|     }
 | |
| 
 | |
|     // vertical lineto (y)
 | |
|     if (command === 'v') {
 | |
|       args[0] += cursor[1];
 | |
|       command = 'V';
 | |
|     }
 | |
|     if (command === 'V') {
 | |
|       cursor[1] = args[0];
 | |
|     }
 | |
| 
 | |
|     // lineto (x y)
 | |
|     if (command === 'l') {
 | |
|       args[0] += cursor[0];
 | |
|       args[1] += cursor[1];
 | |
|       command = 'L';
 | |
|     }
 | |
|     if (command === 'L') {
 | |
|       cursor[0] = args[0];
 | |
|       cursor[1] = args[1];
 | |
|     }
 | |
| 
 | |
|     // curveto (x1 y1 x2 y2 x y)
 | |
|     if (command === 'c') {
 | |
|       args[0] += cursor[0];
 | |
|       args[1] += cursor[1];
 | |
|       args[2] += cursor[0];
 | |
|       args[3] += cursor[1];
 | |
|       args[4] += cursor[0];
 | |
|       args[5] += cursor[1];
 | |
|       command = 'C';
 | |
|     }
 | |
|     if (command === 'C') {
 | |
|       cursor[0] = args[4];
 | |
|       cursor[1] = args[5];
 | |
|     }
 | |
| 
 | |
|     // smooth curveto (x2 y2 x y)
 | |
|     if (command === 's') {
 | |
|       args[0] += cursor[0];
 | |
|       args[1] += cursor[1];
 | |
|       args[2] += cursor[0];
 | |
|       args[3] += cursor[1];
 | |
|       command = 'S';
 | |
|     }
 | |
|     if (command === 'S') {
 | |
|       cursor[0] = args[2];
 | |
|       cursor[1] = args[3];
 | |
|     }
 | |
| 
 | |
|     // quadratic Bézier curveto (x1 y1 x y)
 | |
|     if (command === 'q') {
 | |
|       args[0] += cursor[0];
 | |
|       args[1] += cursor[1];
 | |
|       args[2] += cursor[0];
 | |
|       args[3] += cursor[1];
 | |
|       command = 'Q';
 | |
|     }
 | |
|     if (command === 'Q') {
 | |
|       cursor[0] = args[2];
 | |
|       cursor[1] = args[3];
 | |
|     }
 | |
| 
 | |
|     // smooth quadratic Bézier curveto (x y)
 | |
|     if (command === 't') {
 | |
|       args[0] += cursor[0];
 | |
|       args[1] += cursor[1];
 | |
|       command = 'T';
 | |
|     }
 | |
|     if (command === 'T') {
 | |
|       cursor[0] = args[0];
 | |
|       cursor[1] = args[1];
 | |
|     }
 | |
| 
 | |
|     // elliptical arc (rx ry x-axis-rotation large-arc-flag sweep-flag x y)
 | |
|     if (command === 'a') {
 | |
|       args[5] += cursor[0];
 | |
|       args[6] += cursor[1];
 | |
|       command = 'A';
 | |
|     }
 | |
|     if (command === 'A') {
 | |
|       cursor[0] = args[5];
 | |
|       cursor[1] = args[6];
 | |
|     }
 | |
| 
 | |
|     // closepath
 | |
|     if (command === 'z' || command === 'Z') {
 | |
|       cursor[0] = start[0];
 | |
|       cursor[1] = start[1];
 | |
|       command = 'z';
 | |
|     }
 | |
| 
 | |
|     newData.push({ command, args });
 | |
|   }
 | |
|   return newData;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * @typedef {{ floatPrecision?: number, noSpaceAfterFlags?: boolean }} Js2PathParams
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * Convert path array to string.
 | |
|  *
 | |
|  * @type {(path: XastElement, data: Array<PathDataItem>, params: Js2PathParams) => void}
 | |
|  */
 | |
| exports.js2path = function (path, data, params) {
 | |
|   // @ts-ignore legacy
 | |
|   path.pathJS = data;
 | |
| 
 | |
|   const pathData = [];
 | |
|   for (const item of data) {
 | |
|     // remove moveto commands which are followed by moveto commands
 | |
|     if (
 | |
|       pathData.length !== 0 &&
 | |
|       (item.command === 'M' || item.command === 'm')
 | |
|     ) {
 | |
|       const last = pathData[pathData.length - 1];
 | |
|       if (last.command === 'M' || last.command === 'm') {
 | |
|         pathData.pop();
 | |
|       }
 | |
|     }
 | |
|     pathData.push({
 | |
|       command: item.command,
 | |
|       args: item.args,
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   path.attributes.d = stringifyPathData({
 | |
|     pathData,
 | |
|     precision: params.floatPrecision,
 | |
|     disableSpaceAfterFlags: params.noSpaceAfterFlags,
 | |
|   });
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * @type {(dest: Array<number>, source: Array<number>) => Array<number>}
 | |
|  */
 | |
| function set(dest, source) {
 | |
|   dest[0] = source[source.length - 2];
 | |
|   dest[1] = source[source.length - 1];
 | |
|   return dest;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Checks if two paths have an intersection by checking convex hulls
 | |
|  * collision using Gilbert-Johnson-Keerthi distance algorithm
 | |
|  * https://web.archive.org/web/20180822200027/http://entropyinteractive.com/2011/04/gjk-algorithm/
 | |
|  *
 | |
|  * @type {(path1: Array<PathDataItem>, path2: Array<PathDataItem>) => boolean}
 | |
|  */
 | |
| exports.intersects = function (path1, path2) {
 | |
|   // Collect points of every subpath.
 | |
|   const points1 = gatherPoints(convertRelativeToAbsolute(path1));
 | |
|   const points2 = gatherPoints(convertRelativeToAbsolute(path2));
 | |
| 
 | |
|   // Axis-aligned bounding box check.
 | |
|   if (
 | |
|     points1.maxX <= points2.minX ||
 | |
|     points2.maxX <= points1.minX ||
 | |
|     points1.maxY <= points2.minY ||
 | |
|     points2.maxY <= points1.minY ||
 | |
|     points1.list.every((set1) => {
 | |
|       return points2.list.every((set2) => {
 | |
|         return (
 | |
|           set1.list[set1.maxX][0] <= set2.list[set2.minX][0] ||
 | |
|           set2.list[set2.maxX][0] <= set1.list[set1.minX][0] ||
 | |
|           set1.list[set1.maxY][1] <= set2.list[set2.minY][1] ||
 | |
|           set2.list[set2.maxY][1] <= set1.list[set1.minY][1]
 | |
|         );
 | |
|       });
 | |
|     })
 | |
|   )
 | |
|     return false;
 | |
| 
 | |
|   // Get a convex hull from points of each subpath. Has the most complexity O(n·log n).
 | |
|   const hullNest1 = points1.list.map(convexHull);
 | |
|   const hullNest2 = points2.list.map(convexHull);
 | |
| 
 | |
|   // Check intersection of every subpath of the first path with every subpath of the second.
 | |
|   return hullNest1.some(function (hull1) {
 | |
|     if (hull1.list.length < 3) return false;
 | |
| 
 | |
|     return hullNest2.some(function (hull2) {
 | |
|       if (hull2.list.length < 3) return false;
 | |
| 
 | |
|       var simplex = [getSupport(hull1, hull2, [1, 0])], // create the initial simplex
 | |
|         direction = minus(simplex[0]); // set the direction to point towards the origin
 | |
| 
 | |
|       var iterations = 1e4; // infinite loop protection, 10 000 iterations is more than enough
 | |
|       // eslint-disable-next-line no-constant-condition
 | |
|       while (true) {
 | |
|         // eslint-disable-next-line no-constant-condition
 | |
|         if (iterations-- == 0) {
 | |
|           console.error(
 | |
|             'Error: infinite loop while processing mergePaths plugin.'
 | |
|           );
 | |
|           return true; // true is the safe value that means “do nothing with paths”
 | |
|         }
 | |
|         // add a new point
 | |
|         simplex.push(getSupport(hull1, hull2, direction));
 | |
|         // see if the new point was on the correct side of the origin
 | |
|         if (dot(direction, simplex[simplex.length - 1]) <= 0) return false;
 | |
|         // process the simplex
 | |
|         if (processSimplex(simplex, direction)) return true;
 | |
|       }
 | |
|     });
 | |
|   });
 | |
| 
 | |
|   /**
 | |
|    * @type {(a: Point, b: Point, direction: Array<number>) => Array<number>}
 | |
|    */
 | |
|   function getSupport(a, b, direction) {
 | |
|     return sub(supportPoint(a, direction), supportPoint(b, minus(direction)));
 | |
|   }
 | |
| 
 | |
|   // Computes farthest polygon point in particular direction.
 | |
|   // Thanks to knowledge of min/max x and y coordinates we can choose a quadrant to search in.
 | |
|   // Since we're working on convex hull, the dot product is increasing until we find the farthest point.
 | |
|   /**
 | |
|    * @type {(polygon: Point, direction: Array<number>) => Array<number>}
 | |
|    */
 | |
|   function supportPoint(polygon, direction) {
 | |
|     var index =
 | |
|         direction[1] >= 0
 | |
|           ? direction[0] < 0
 | |
|             ? polygon.maxY
 | |
|             : polygon.maxX
 | |
|           : direction[0] < 0
 | |
|           ? polygon.minX
 | |
|           : polygon.minY,
 | |
|       max = -Infinity,
 | |
|       value;
 | |
|     while ((value = dot(polygon.list[index], direction)) > max) {
 | |
|       max = value;
 | |
|       index = ++index % polygon.list.length;
 | |
|     }
 | |
|     return polygon.list[(index || polygon.list.length) - 1];
 | |
|   }
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * @type {(simplex: Array<Array<number>>, direction: Array<number>) => boolean}
 | |
|  */
 | |
| function processSimplex(simplex, direction) {
 | |
|   // we only need to handle to 1-simplex and 2-simplex
 | |
|   if (simplex.length == 2) {
 | |
|     // 1-simplex
 | |
|     let a = simplex[1],
 | |
|       b = simplex[0],
 | |
|       AO = minus(simplex[1]),
 | |
|       AB = sub(b, a);
 | |
|     // AO is in the same direction as AB
 | |
|     if (dot(AO, AB) > 0) {
 | |
|       // get the vector perpendicular to AB facing O
 | |
|       set(direction, orth(AB, a));
 | |
|     } else {
 | |
|       set(direction, AO);
 | |
|       // only A remains in the simplex
 | |
|       simplex.shift();
 | |
|     }
 | |
|   } else {
 | |
|     // 2-simplex
 | |
|     let a = simplex[2], // [a, b, c] = simplex
 | |
|       b = simplex[1],
 | |
|       c = simplex[0],
 | |
|       AB = sub(b, a),
 | |
|       AC = sub(c, a),
 | |
|       AO = minus(a),
 | |
|       ACB = orth(AB, AC), // the vector perpendicular to AB facing away from C
 | |
|       ABC = orth(AC, AB); // the vector perpendicular to AC facing away from B
 | |
| 
 | |
|     if (dot(ACB, AO) > 0) {
 | |
|       if (dot(AB, AO) > 0) {
 | |
|         // region 4
 | |
|         set(direction, ACB);
 | |
|         simplex.shift(); // simplex = [b, a]
 | |
|       } else {
 | |
|         // region 5
 | |
|         set(direction, AO);
 | |
|         simplex.splice(0, 2); // simplex = [a]
 | |
|       }
 | |
|     } else if (dot(ABC, AO) > 0) {
 | |
|       if (dot(AC, AO) > 0) {
 | |
|         // region 6
 | |
|         set(direction, ABC);
 | |
|         simplex.splice(1, 1); // simplex = [c, a]
 | |
|       } else {
 | |
|         // region 5 (again)
 | |
|         set(direction, AO);
 | |
|         simplex.splice(0, 2); // simplex = [a]
 | |
|       }
 | |
|     } // region 7
 | |
|     else return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @type {(v: Array<number>) => Array<number>}
 | |
|  */
 | |
| function minus(v) {
 | |
|   return [-v[0], -v[1]];
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @type {(v1: Array<number>, v2: Array<number>) => Array<number>}
 | |
|  */
 | |
| function sub(v1, v2) {
 | |
|   return [v1[0] - v2[0], v1[1] - v2[1]];
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @type {(v1: Array<number>, v2: Array<number>) => number}
 | |
|  */
 | |
| function dot(v1, v2) {
 | |
|   return v1[0] * v2[0] + v1[1] * v2[1];
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @type {(v1: Array<number>, v2: Array<number>) => Array<number>}
 | |
|  */
 | |
| function orth(v, from) {
 | |
|   var o = [-v[1], v[0]];
 | |
|   return dot(o, minus(from)) < 0 ? minus(o) : o;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @typedef {{
 | |
|  *   list: Array<Array<number>>,
 | |
|  *   minX: number,
 | |
|  *   minY: number,
 | |
|  *   maxX: number,
 | |
|  *   maxY: number
 | |
|  * }} Point
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @typedef {{
 | |
|  *   list: Array<Point>,
 | |
|  *   minX: number,
 | |
|  *   minY: number,
 | |
|  *   maxX: number,
 | |
|  *   maxY: number
 | |
|  * }} Points
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * @type {(pathData: Array<PathDataItem>) => Points}
 | |
|  */
 | |
| function gatherPoints(pathData) {
 | |
|   /**
 | |
|    * @type {Points}
 | |
|    */
 | |
|   const points = { list: [], minX: 0, minY: 0, maxX: 0, maxY: 0 };
 | |
| 
 | |
|   // Writes data about the extreme points on each axle
 | |
|   /**
 | |
|    * @type {(path: Point, point: Array<number>) => void}
 | |
|    */
 | |
|   const addPoint = (path, point) => {
 | |
|     if (!path.list.length || point[1] > path.list[path.maxY][1]) {
 | |
|       path.maxY = path.list.length;
 | |
|       points.maxY = points.list.length
 | |
|         ? Math.max(point[1], points.maxY)
 | |
|         : point[1];
 | |
|     }
 | |
|     if (!path.list.length || point[0] > path.list[path.maxX][0]) {
 | |
|       path.maxX = path.list.length;
 | |
|       points.maxX = points.list.length
 | |
|         ? Math.max(point[0], points.maxX)
 | |
|         : point[0];
 | |
|     }
 | |
|     if (!path.list.length || point[1] < path.list[path.minY][1]) {
 | |
|       path.minY = path.list.length;
 | |
|       points.minY = points.list.length
 | |
|         ? Math.min(point[1], points.minY)
 | |
|         : point[1];
 | |
|     }
 | |
|     if (!path.list.length || point[0] < path.list[path.minX][0]) {
 | |
|       path.minX = path.list.length;
 | |
|       points.minX = points.list.length
 | |
|         ? Math.min(point[0], points.minX)
 | |
|         : point[0];
 | |
|     }
 | |
|     path.list.push(point);
 | |
|   };
 | |
| 
 | |
|   for (let i = 0; i < pathData.length; i += 1) {
 | |
|     const pathDataItem = pathData[i];
 | |
|     let subPath =
 | |
|       points.list.length === 0
 | |
|         ? { list: [], minX: 0, minY: 0, maxX: 0, maxY: 0 }
 | |
|         : points.list[points.list.length - 1];
 | |
|     let prev = i === 0 ? null : pathData[i - 1];
 | |
|     let basePoint =
 | |
|       subPath.list.length === 0 ? null : subPath.list[subPath.list.length - 1];
 | |
|     let data = pathDataItem.args;
 | |
|     let ctrlPoint = basePoint;
 | |
| 
 | |
|     /**
 | |
|      * @type {(n: number, i: number) => number}
 | |
|      * TODO fix null hack
 | |
|      */
 | |
|     const toAbsolute = (n, i) => n + (basePoint == null ? 0 : basePoint[i % 2]);
 | |
| 
 | |
|     switch (pathDataItem.command) {
 | |
|       case 'M':
 | |
|         subPath = { list: [], minX: 0, minY: 0, maxX: 0, maxY: 0 };
 | |
|         points.list.push(subPath);
 | |
|         break;
 | |
| 
 | |
|       case 'H':
 | |
|         if (basePoint != null) {
 | |
|           addPoint(subPath, [data[0], basePoint[1]]);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|       case 'V':
 | |
|         if (basePoint != null) {
 | |
|           addPoint(subPath, [basePoint[0], data[0]]);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|       case 'Q':
 | |
|         addPoint(subPath, data.slice(0, 2));
 | |
|         prevCtrlPoint = [data[2] - data[0], data[3] - data[1]]; // Save control point for shorthand
 | |
|         break;
 | |
| 
 | |
|       case 'T':
 | |
|         if (
 | |
|           basePoint != null &&
 | |
|           prev != null &&
 | |
|           (prev.command == 'Q' || prev.command == 'T')
 | |
|         ) {
 | |
|           ctrlPoint = [
 | |
|             basePoint[0] + prevCtrlPoint[0],
 | |
|             basePoint[1] + prevCtrlPoint[1],
 | |
|           ];
 | |
|           addPoint(subPath, ctrlPoint);
 | |
|           prevCtrlPoint = [data[0] - ctrlPoint[0], data[1] - ctrlPoint[1]];
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|       case 'C':
 | |
|         if (basePoint != null) {
 | |
|           // Approximate quibic Bezier curve with middle points between control points
 | |
|           addPoint(subPath, [
 | |
|             0.5 * (basePoint[0] + data[0]),
 | |
|             0.5 * (basePoint[1] + data[1]),
 | |
|           ]);
 | |
|         }
 | |
|         addPoint(subPath, [
 | |
|           0.5 * (data[0] + data[2]),
 | |
|           0.5 * (data[1] + data[3]),
 | |
|         ]);
 | |
|         addPoint(subPath, [
 | |
|           0.5 * (data[2] + data[4]),
 | |
|           0.5 * (data[3] + data[5]),
 | |
|         ]);
 | |
|         prevCtrlPoint = [data[4] - data[2], data[5] - data[3]]; // Save control point for shorthand
 | |
|         break;
 | |
| 
 | |
|       case 'S':
 | |
|         if (
 | |
|           basePoint != null &&
 | |
|           prev != null &&
 | |
|           (prev.command == 'C' || prev.command == 'S')
 | |
|         ) {
 | |
|           addPoint(subPath, [
 | |
|             basePoint[0] + 0.5 * prevCtrlPoint[0],
 | |
|             basePoint[1] + 0.5 * prevCtrlPoint[1],
 | |
|           ]);
 | |
|           ctrlPoint = [
 | |
|             basePoint[0] + prevCtrlPoint[0],
 | |
|             basePoint[1] + prevCtrlPoint[1],
 | |
|           ];
 | |
|         }
 | |
|         if (ctrlPoint != null) {
 | |
|           addPoint(subPath, [
 | |
|             0.5 * (ctrlPoint[0] + data[0]),
 | |
|             0.5 * (ctrlPoint[1] + data[1]),
 | |
|           ]);
 | |
|         }
 | |
|         addPoint(subPath, [
 | |
|           0.5 * (data[0] + data[2]),
 | |
|           0.5 * (data[1] + data[3]),
 | |
|         ]);
 | |
|         prevCtrlPoint = [data[2] - data[0], data[3] - data[1]];
 | |
|         break;
 | |
| 
 | |
|       case 'A':
 | |
|         if (basePoint != null) {
 | |
|           // Convert the arc to bezier curves and use the same approximation
 | |
|           // @ts-ignore no idea what's going on here
 | |
|           var curves = a2c.apply(0, basePoint.concat(data));
 | |
|           for (
 | |
|             var cData;
 | |
|             (cData = curves.splice(0, 6).map(toAbsolute)).length;
 | |
| 
 | |
|           ) {
 | |
|             if (basePoint != null) {
 | |
|               addPoint(subPath, [
 | |
|                 0.5 * (basePoint[0] + cData[0]),
 | |
|                 0.5 * (basePoint[1] + cData[1]),
 | |
|               ]);
 | |
|             }
 | |
|             addPoint(subPath, [
 | |
|               0.5 * (cData[0] + cData[2]),
 | |
|               0.5 * (cData[1] + cData[3]),
 | |
|             ]);
 | |
|             addPoint(subPath, [
 | |
|               0.5 * (cData[2] + cData[4]),
 | |
|               0.5 * (cData[3] + cData[5]),
 | |
|             ]);
 | |
|             if (curves.length) addPoint(subPath, (basePoint = cData.slice(-2)));
 | |
|           }
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     // Save final command coordinates
 | |
|     if (data.length >= 2) addPoint(subPath, data.slice(-2));
 | |
|   }
 | |
| 
 | |
|   return points;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Forms a convex hull from set of points of every subpath using monotone chain convex hull algorithm.
 | |
|  * https://en.wikibooks.org/wiki/Algorithm_Implementation/Geometry/Convex_hull/Monotone_chain
 | |
|  *
 | |
|  * @type {(points: Point) => Point}
 | |
|  */
 | |
| function convexHull(points) {
 | |
|   points.list.sort(function (a, b) {
 | |
|     return a[0] == b[0] ? a[1] - b[1] : a[0] - b[0];
 | |
|   });
 | |
| 
 | |
|   var lower = [],
 | |
|     minY = 0,
 | |
|     bottom = 0;
 | |
|   for (let i = 0; i < points.list.length; i++) {
 | |
|     while (
 | |
|       lower.length >= 2 &&
 | |
|       cross(lower[lower.length - 2], lower[lower.length - 1], points.list[i]) <=
 | |
|         0
 | |
|     ) {
 | |
|       lower.pop();
 | |
|     }
 | |
|     if (points.list[i][1] < points.list[minY][1]) {
 | |
|       minY = i;
 | |
|       bottom = lower.length;
 | |
|     }
 | |
|     lower.push(points.list[i]);
 | |
|   }
 | |
| 
 | |
|   var upper = [],
 | |
|     maxY = points.list.length - 1,
 | |
|     top = 0;
 | |
|   for (let i = points.list.length; i--; ) {
 | |
|     while (
 | |
|       upper.length >= 2 &&
 | |
|       cross(upper[upper.length - 2], upper[upper.length - 1], points.list[i]) <=
 | |
|         0
 | |
|     ) {
 | |
|       upper.pop();
 | |
|     }
 | |
|     if (points.list[i][1] > points.list[maxY][1]) {
 | |
|       maxY = i;
 | |
|       top = upper.length;
 | |
|     }
 | |
|     upper.push(points.list[i]);
 | |
|   }
 | |
| 
 | |
|   // last points are equal to starting points of the other part
 | |
|   upper.pop();
 | |
|   lower.pop();
 | |
| 
 | |
|   const hullList = lower.concat(upper);
 | |
| 
 | |
|   /**
 | |
|    * @type {Point}
 | |
|    */
 | |
|   const hull = {
 | |
|     list: hullList,
 | |
|     minX: 0, // by sorting
 | |
|     maxX: lower.length,
 | |
|     minY: bottom,
 | |
|     maxY: (lower.length + top) % hullList.length,
 | |
|   };
 | |
| 
 | |
|   return hull;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @type {(o: Array<number>, a: Array<number>, b: Array<number>) => number}
 | |
|  */
 | |
| function cross(o, a, b) {
 | |
|   return (a[0] - o[0]) * (b[1] - o[1]) - (a[1] - o[1]) * (b[0] - o[0]);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Based on code from Snap.svg (Apache 2 license). http://snapsvg.io/
 | |
|  * Thanks to Dmitry Baranovskiy for his great work!
 | |
|  *
 | |
|  * @type {(
 | |
|  *  x1: number,
 | |
|  *  y1: number,
 | |
|  *  rx: number,
 | |
|  *  ry: number,
 | |
|  *  angle: number,
 | |
|  *  large_arc_flag: number,
 | |
|  *  sweep_flag: number,
 | |
|  *  x2: number,
 | |
|  *  y2: number,
 | |
|  *  recursive: Array<number>
 | |
|  * ) => Array<number>}
 | |
|  */
 | |
| const a2c = (
 | |
|   x1,
 | |
|   y1,
 | |
|   rx,
 | |
|   ry,
 | |
|   angle,
 | |
|   large_arc_flag,
 | |
|   sweep_flag,
 | |
|   x2,
 | |
|   y2,
 | |
|   recursive
 | |
| ) => {
 | |
|   // for more information of where this Math came from visit:
 | |
|   // https://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes
 | |
|   const _120 = (Math.PI * 120) / 180;
 | |
|   const rad = (Math.PI / 180) * (+angle || 0);
 | |
|   /**
 | |
|    * @type {Array<number>}
 | |
|    */
 | |
|   let res = [];
 | |
|   /**
 | |
|    * @type {(x: number, y: number, rad: number) => number}
 | |
|    */
 | |
|   const rotateX = (x, y, rad) => {
 | |
|     return x * Math.cos(rad) - y * Math.sin(rad);
 | |
|   };
 | |
|   /**
 | |
|    * @type {(x: number, y: number, rad: number) => number}
 | |
|    */
 | |
|   const rotateY = (x, y, rad) => {
 | |
|     return x * Math.sin(rad) + y * Math.cos(rad);
 | |
|   };
 | |
|   if (!recursive) {
 | |
|     x1 = rotateX(x1, y1, -rad);
 | |
|     y1 = rotateY(x1, y1, -rad);
 | |
|     x2 = rotateX(x2, y2, -rad);
 | |
|     y2 = rotateY(x2, y2, -rad);
 | |
|     var x = (x1 - x2) / 2,
 | |
|       y = (y1 - y2) / 2;
 | |
|     var h = (x * x) / (rx * rx) + (y * y) / (ry * ry);
 | |
|     if (h > 1) {
 | |
|       h = Math.sqrt(h);
 | |
|       rx = h * rx;
 | |
|       ry = h * ry;
 | |
|     }
 | |
|     var rx2 = rx * rx;
 | |
|     var ry2 = ry * ry;
 | |
|     var k =
 | |
|       (large_arc_flag == sweep_flag ? -1 : 1) *
 | |
|       Math.sqrt(
 | |
|         Math.abs(
 | |
|           (rx2 * ry2 - rx2 * y * y - ry2 * x * x) / (rx2 * y * y + ry2 * x * x)
 | |
|         )
 | |
|       );
 | |
|     var cx = (k * rx * y) / ry + (x1 + x2) / 2;
 | |
|     var cy = (k * -ry * x) / rx + (y1 + y2) / 2;
 | |
|     var f1 = Math.asin(Number(((y1 - cy) / ry).toFixed(9)));
 | |
|     var f2 = Math.asin(Number(((y2 - cy) / ry).toFixed(9)));
 | |
| 
 | |
|     f1 = x1 < cx ? Math.PI - f1 : f1;
 | |
|     f2 = x2 < cx ? Math.PI - f2 : f2;
 | |
|     f1 < 0 && (f1 = Math.PI * 2 + f1);
 | |
|     f2 < 0 && (f2 = Math.PI * 2 + f2);
 | |
|     if (sweep_flag && f1 > f2) {
 | |
|       f1 = f1 - Math.PI * 2;
 | |
|     }
 | |
|     if (!sweep_flag && f2 > f1) {
 | |
|       f2 = f2 - Math.PI * 2;
 | |
|     }
 | |
|   } else {
 | |
|     f1 = recursive[0];
 | |
|     f2 = recursive[1];
 | |
|     cx = recursive[2];
 | |
|     cy = recursive[3];
 | |
|   }
 | |
|   var df = f2 - f1;
 | |
|   if (Math.abs(df) > _120) {
 | |
|     var f2old = f2,
 | |
|       x2old = x2,
 | |
|       y2old = y2;
 | |
|     f2 = f1 + _120 * (sweep_flag && f2 > f1 ? 1 : -1);
 | |
|     x2 = cx + rx * Math.cos(f2);
 | |
|     y2 = cy + ry * Math.sin(f2);
 | |
|     res = a2c(x2, y2, rx, ry, angle, 0, sweep_flag, x2old, y2old, [
 | |
|       f2,
 | |
|       f2old,
 | |
|       cx,
 | |
|       cy,
 | |
|     ]);
 | |
|   }
 | |
|   df = f2 - f1;
 | |
|   var c1 = Math.cos(f1),
 | |
|     s1 = Math.sin(f1),
 | |
|     c2 = Math.cos(f2),
 | |
|     s2 = Math.sin(f2),
 | |
|     t = Math.tan(df / 4),
 | |
|     hx = (4 / 3) * rx * t,
 | |
|     hy = (4 / 3) * ry * t,
 | |
|     m = [
 | |
|       -hx * s1,
 | |
|       hy * c1,
 | |
|       x2 + hx * s2 - x1,
 | |
|       y2 - hy * c2 - y1,
 | |
|       x2 - x1,
 | |
|       y2 - y1,
 | |
|     ];
 | |
|   if (recursive) {
 | |
|     return m.concat(res);
 | |
|   } else {
 | |
|     res = m.concat(res);
 | |
|     var newres = [];
 | |
|     for (var i = 0, n = res.length; i < n; i++) {
 | |
|       newres[i] =
 | |
|         i % 2
 | |
|           ? rotateY(res[i - 1], res[i], rad)
 | |
|           : rotateX(res[i], res[i + 1], rad);
 | |
|     }
 | |
|     return newres;
 | |
|   }
 | |
| };
 |