1. 调整目录结构

2. 实现user_controller
This commit is contained in:
2025-09-11 23:48:06 +08:00
parent 1aab2e850a
commit 196e63f40d
16 changed files with 298 additions and 21 deletions

View File

@@ -0,0 +1,304 @@
// Package task_test 包含对 task 包的单元测试
package task_test
import (
"errors"
"fmt"
"sync"
"sync/atomic"
"testing"
"time"
"git.huangwc.com/pig/pig-farm-controller/internal/infra/config"
"git.huangwc.com/pig/pig-farm-controller/internal/infra/logs"
"git.huangwc.com/pig/pig-farm-controller/internal/infra/task"
"github.com/stretchr/testify/assert"
)
// testLogger 是一个用于所有测试用例的静默 logger 实例。
var testLogger *logs.Logger
func init() {
// 使用 "fatal" 级别来创建一个在测试期间不会产生任何输出的 logger。
// 这避免了在运行 `go test` 时被日志淹没。
cfg := config.LogConfig{Level: "fatal"}
testLogger = logs.NewLogger(cfg)
}
// MockTask 用于测试的模拟任务
type MockTask struct {
id string
priority int
isDone bool
execute func() error
executed int32 // 使用原子操作来跟踪执行次数
}
// Execute 实现了 Task 接口,并确保每次调用都增加执行计数
func (m *MockTask) Execute() error {
atomic.AddInt32(&m.executed, 1)
if m.execute != nil {
return m.execute()
}
return nil
}
func (m *MockTask) GetID() string {
return m.id
}
func (m *MockTask) GetPriority() int {
return m.priority
}
func (m *MockTask) IsDone() bool {
return m.isDone
}
// ExecutedCount 返回任务被执行的次数
func (m *MockTask) ExecutedCount() int32 {
return atomic.LoadInt32(&m.executed)
}
// --- Helper function for robust waiting ---
func waitForWaitGroup(t *testing.T, wg *sync.WaitGroup, timeout time.Duration) {
waitChan := make(chan struct{})
go func() {
defer close(waitChan)
wg.Wait()
}()
select {
case <-waitChan:
// Wait succeeded
case <-time.After(timeout):
t.Fatal("timed out waiting for tasks to complete")
}
}
// --- TaskQueue Tests (No changes needed) ---
func TestNewTaskQueue(t *testing.T) {
tq := task.NewTaskQueue(testLogger)
assert.NotNil(t, tq, "新创建的任务队列不应为 nil")
assert.Equal(t, 0, tq.GetTaskCount(), "新创建的任务队列应为空")
}
func TestTaskQueue_AddTask(t *testing.T) {
tq := task.NewTaskQueue(testLogger)
mockTask := &MockTask{id: "task1", priority: 1}
tq.AddTask(mockTask)
assert.Equal(t, 1, tq.GetTaskCount(), "添加任务后,队列中的任务数应为 1")
}
// ... (other TaskQueue tests remain the same)
func TestTaskQueue_GetNextTask(t *testing.T) {
t.Run("从空队列获取任务", func(t *testing.T) {
tq := task.NewTaskQueue(testLogger)
nextTask := tq.GetNextTask()
assert.Nil(t, nextTask, "从空队列中获取任务应返回 nil")
})
t.Run("按优先级获取任务", func(t *testing.T) {
tq := task.NewTaskQueue(testLogger)
task1 := &MockTask{id: "task1", priority: 10}
task2 := &MockTask{id: "task2", priority: 1} // 优先级更高
task3 := &MockTask{id: "task3", priority: 5}
tq.AddTask(task1)
tq.AddTask(task2)
tq.AddTask(task3)
assert.Equal(t, 3, tq.GetTaskCount(), "添加三个任务后,队列中的任务数应为 3")
nextTask := tq.GetNextTask()
assert.NotNil(t, nextTask)
assert.Equal(t, "task2", nextTask.GetID(), "应首先获取优先级最高的任务 (task2)")
nextTask = tq.GetNextTask()
assert.NotNil(t, nextTask)
assert.Equal(t, "task3", nextTask.GetID(), "应获取下一个优先级最高的任务 (task3)")
nextTask = tq.GetNextTask()
assert.NotNil(t, nextTask)
assert.Equal(t, "task1", nextTask.GetID(), "应最后获取优先级最低的任务 (task1)")
assert.Equal(t, 0, tq.GetTaskCount(), "获取所有任务后,队列应为空")
})
}
func TestTaskQueue_Concurrency(t *testing.T) {
tq := task.NewTaskQueue(testLogger)
var wg sync.WaitGroup
taskCount := 100
wg.Add(taskCount)
for i := 0; i < taskCount; i++ {
go func(i int) {
defer wg.Done()
tq.AddTask(&MockTask{id: fmt.Sprintf("task-%d", i), priority: i})
}(i)
}
wg.Wait()
assert.Equal(t, taskCount, tq.GetTaskCount(), "并发添加任务后,队列中的任务数应为 %d", taskCount)
wg.Add(taskCount)
for i := 0; i < taskCount; i++ {
go func() {
defer wg.Done()
task := tq.GetNextTask()
assert.NotNil(t, task)
}()
}
wg.Wait()
assert.Equal(t, 0, tq.GetTaskCount(), "并发获取所有任务后,队列应为空")
}
// --- Executor Tests (Refactored for reliability) ---
func TestNewExecutor(t *testing.T) {
executor := task.NewExecutor(5, testLogger)
assert.NotNil(t, executor, "新创建的执行器不应为 nil")
}
func TestExecutor_StartStop(t *testing.T) {
executor := task.NewExecutor(2, testLogger)
executor.Start()
// 确保立即停止不会导致死锁或竞争条件。
executor.Stop()
}
// TestExecutor_SubmitAndExecuteTask 测试提交并执行单个任务 (已重构,更可靠)
func TestExecutor_SubmitAndExecuteTask(t *testing.T) {
var wg sync.WaitGroup
wg.Add(1)
executor := task.NewExecutor(1, testLogger)
mockTask := &MockTask{
id: "task1",
priority: 1,
execute: func() error {
wg.Done() // 任务完成时通知 WaitGroup
return nil
},
}
executor.Start()
executor.SubmitTask(mockTask)
// 等待任务完成,设置一个合理的超时时间
waitForWaitGroup(t, &wg, 2*time.Second)
executor.Stop()
assert.Equal(t, int32(1), mockTask.ExecutedCount(), "任务应该已被执行")
}
// TestExecutor_ExecuteMultipleTasks 测试执行多个任务 (已重构,更可靠)
func TestExecutor_ExecuteMultipleTasks(t *testing.T) {
taskCount := 10
var wg sync.WaitGroup
wg.Add(taskCount)
executor := task.NewExecutor(3, testLogger)
mockTasks := make([]*MockTask, taskCount)
for i := 0; i < taskCount; i++ {
mockTasks[i] = &MockTask{
id: fmt.Sprintf("task-%d", i),
priority: i,
execute: func() error {
wg.Done() // 每个任务完成时都通知 WaitGroup
return nil
},
}
}
executor.Start()
for _, task := range mockTasks {
executor.SubmitTask(task)
}
// 等待所有任务完成
waitForWaitGroup(t, &wg, 2*time.Second)
executor.Stop()
var totalExecuted int32
for _, task := range mockTasks {
totalExecuted += task.ExecutedCount()
}
assert.Equal(t, int32(taskCount), totalExecuted, "所有提交的任务都应该被执行")
}
// TestExecutor_TaskExecutionError 测试任务执行失败的场景 (已重构,更可靠)
func TestExecutor_TaskExecutionError(t *testing.T) {
var wg sync.WaitGroup
wg.Add(2) // 我们期望两个任务都被执行
executor := task.NewExecutor(1, testLogger)
errorTask := &MockTask{
id: "errorTask",
priority: 1,
execute: func() error {
wg.Done()
return errors.New("执行失败")
},
}
successTask := &MockTask{
id: "successTask",
priority: 2, // 后执行
execute: func() error {
wg.Done()
return nil
},
}
executor.Start()
executor.SubmitTask(errorTask)
executor.SubmitTask(successTask)
waitForWaitGroup(t, &wg, 2*time.Second)
executor.Stop()
assert.Equal(t, int32(1), errorTask.ExecutedCount(), "失败的任务应该被执行一次")
assert.Equal(t, int32(1), successTask.ExecutedCount(), "成功的任务也应该被执行")
}
// TestExecutor_StopWithPendingTasks 测试停止执行器时仍有待处理任务 (已重构,更可靠)
func TestExecutor_StopWithPendingTasks(t *testing.T) {
executor := task.NewExecutor(1, testLogger)
task1Started := make(chan struct{})
task1 := &MockTask{
id: "task1",
priority: 1,
execute: func() error {
close(task1Started) // 发送信号,通知测试 task1 已开始执行
time.Sleep(200 * time.Millisecond) // 模拟耗时操作
return nil
},
}
task2 := &MockTask{id: "task2", priority: 2}
executor.Start()
executor.SubmitTask(task1)
executor.SubmitTask(task2)
// 等待 task1 开始执行的信号,而不是依赖不确定的 sleep
select {
case <-task1Started:
// task1 已开始,可以安全地停止执行器了
case <-time.After(1 * time.Second):
t.Fatal("timed out waiting for task1 to start")
}
executor.Stop()
assert.Equal(t, int32(1), task1.ExecutedCount(), "task1 应该在停止前开始执行")
assert.Equal(t, int32(0), task2.ExecutedCount(), "task2 不应该被执行,因为执行器已停止")
}