@@ -1,31 +1,103 @@
package lora
import (
"bytes"
"encoding/binary"
"encoding/json"
"fmt"
"io"
"math"
"strconv"
"sync"
"time"
"git.huangwc.com/pig/pig-farm-controller/internal/infra/config"
"git.huangwc.com/pig/pig-farm-controller/internal/infra/logs"
"git.huangwc.com/pig/pig-farm-controller/internal/infra/models"
"git.huangwc.com/pig/pig-farm-controller/internal/infra/repository"
"git.huangwc.com/pig/pig-farm-controller/internal/infra/transport"
"git.huangwc.com/pig/pig-farm-controller/internal/infra/transport/proto"
"github.com/google/uuid"
"github.com/tarm/serial"
gproto "google.golang.org/protobuf/proto"
"gorm.io/datatypes"
)
// LoRaMeshUartPassthroughTransport 实现 transport.Communicator 接口, 用于 LoRa 网状网络 UART 透传
// transportState 定义了传输层的内部状态
type transportState int
const (
stateIdle transportState = iota // 空闲状态
stateReceiving // 接收状态:正在接收一个(可能分片的)消息
stateSending // 发送状态:正在发送一个(可能分片的)消息
)
// message 是一个内部结构,用于封装一个完整的、已重组的消息及其元数据
type message struct {
SourceAddr string // 源地址
DestAddr string // 目标地址
Payload [ ] byte // 有效载荷
}
// LoRaMeshUartPassthroughTransport 实现了 transport.Communicator 和 transport.Listener 接口
type LoRaMeshUartPassthroughTransport struct {
config config . LoraMeshConfig
logger * logs . Logger
mu sync . Mutex // 保护对 LoRa 模块的并发访问
port * serial . Port
mu sync . Mutex // 用于保护对外的公共方法( 如Send) 的并发调用
state transportState
stopChan chan struct { } // 用于优雅地停止worker协程
wg sync . WaitGroup // 用于等待worker协程完全退出
sendChan chan * sendRequest // 发送任务的请求通道
// --- 接收与重组相关 ---
reassemblyBuffers map [ uint16 ] * reassemblyBuffer // 键为源地址SourceAddr, 值为对应的重组缓冲区
currentRecvSource uint16 // 当前正在接收的源地址
reassemblyTimeout * time . Timer // 分片重组的超时定时器
reassemblyTimeoutCh chan uint16 // 当超时触发时,用于传递源地址
// --- 依赖注入的仓库 ---
areaControllerRepo repository . AreaControllerRepository
pendingCollectionRepo repository . PendingCollectionRepository
deviceRepo repository . DeviceRepository
sensorDataRepo repository . SensorDataRepository
}
// NewLoRaMeshUartPassthroughTransport 创建一个新的 LoRaMeshUartPassthroughTransport
func NewLoRaMeshUartPassthroughTransport ( config config . LoraMeshConfig , logger * logs . Logger ) ( * LoRaMeshUartPassthroughTransport , error ) {
// sendRequest 封装了一次发送请求
type sendRequest struct {
address string
payload [ ] byte
result chan * sendResultTuple
}
// sendResultTuple 用于在通道中安全地传递Send方法的返回值
type sendResultTuple struct {
result * transport . SendResult
err error
}
// reassemblyBuffer 用于缓存和重组来自同一源的分片
type reassemblyBuffer struct {
chunks map [ uint8 ] [ ] byte // 键为当前包序号CurrentChunk
totalChunks uint8
receivedChunks int
}
// NewLoRaMeshUartPassthroughTransport 创建一个新的 LoRaMeshUartPassthroughTransport 实例
func NewLoRaMeshUartPassthroughTransport (
config config . LoraMeshConfig ,
logger * logs . Logger ,
areaControllerRepo repository . AreaControllerRepository ,
pendingCollectionRepo repository . PendingCollectionRepository ,
deviceRepo repository . DeviceRepository ,
sensorDataRepo repository . SensorDataRepository ,
) ( * LoRaMeshUartPassthroughTransport , error ) {
c := & serial . Config {
Name : config . UARTPort ,
Baud : config . BaudRate ,
ReadTimeout : time . S econd * time . Duration ( config . Timeout ) ,
ReadTimeout : time . Millis econd * time . Duration ( config . Timeout ) ,
}
port , err := serial . OpenPort ( c )
@@ -33,26 +105,441 @@ func NewLoRaMeshUartPassthroughTransport(config config.LoraMeshConfig, logger *l
return nil , fmt . Errorf ( "无法打开串口 %s: %w" , config . UARTPort , err )
}
return & LoRaMeshUartPassthroughTransport {
t := & LoRaMeshUartPassthroughTransport {
config : config ,
logger : logger ,
mu : sync . Mutex { } ,
port : port ,
} , nil
}
// Send 将数据发送到指定的地址
func ( t * LoRaMeshUartPassthroughTransport ) Send ( address string , payload [ ] byte ) ( * transport . SendResult , error ) {
// TODO: 实现发送逻辑
return nil , nil
state : stateIdle ,
stopChan : make ( chan struct { } ) ,
sendChan : make ( chan * sendRequest ) ,
reassemblyBuffers : make ( map [ uint16 ] * reassemblyBuffer ) ,
reassemblyTimeoutCh : make ( chan uint16 , 1 ) ,
// 注入依赖
areaControllerRepo : areaControllerRepo ,
pendingCollectionRepo : pendingCollectionRepo ,
deviceRepo : deviceRepo ,
sensorDataRepo : sensorDataRepo ,
}
return t , nil
}
// Listen 启动后台监听协程(非阻塞)
func ( t * LoRaMeshUartPassthroughTransport ) Listen ( ) error {
//TODO implement me
panic ( "implement me" )
t . wg . Add ( 1 )
go t . workerLoop ( )
t . logger . Info ( "LoRa传输层工作协程已启动" )
return nil
}
func ( t * LoRaMeshUartPassthroughTransport ) Stop ( ) error {
//TODO implement me
panic ( "implement me" )
// Send 将发送任务提交给worker协程
func ( t * LoRaMeshUartPassthroughTransport ) Send ( address string , payload [ ] byte ) ( * transport . SendResult , error ) {
t . mu . Lock ( )
defer t . mu . Unlock ( )
resultChan := make ( chan * sendResultTuple , 1 )
req := & sendRequest {
address : address ,
payload : payload ,
result : resultChan ,
}
select {
case t . sendChan <- req :
// 等待worker协程处理完毕
res := <- resultChan
return res . result , res . err
case <- t . stopChan :
return nil , fmt . Errorf ( "传输层正在停止" )
}
}
// Stop 停止传输层
func ( t * LoRaMeshUartPassthroughTransport ) Stop ( ) error {
close ( t . stopChan )
t . wg . Wait ( )
return t . port . Close ( )
}
// workerLoop 是核心的状态机和调度器
func ( t * LoRaMeshUartPassthroughTransport ) workerLoop ( ) {
defer t . wg . Done ( )
readBuffer := make ( [ ] byte , 1024 )
parserBuffer := new ( bytes . Buffer )
for {
// 1. 检查是否需要停止 (优先检查,以便快速退出)
select {
case <- t . stopChan :
if t . reassemblyTimeout != nil {
t . reassemblyTimeout . Stop ( )
}
t . logger . Info ( "LoRa传输层工作协程已停止" )
return
default :
}
// 2. 尝试从串口读取数据
n , err := t . port . Read ( readBuffer )
if n > 0 {
parserBuffer . Write ( readBuffer [ : n ] )
}
if err != nil && err != io . EOF {
// 忽略预期的超时错误(io.EOF), 只记录真正的IO错误
t . logger . Errorf ( "从串口读取数据时发生错误: %v" , err )
}
// 3. 循环解析缓冲区中的完整物理帧
for {
frame := t . parseCompleteFrame ( parserBuffer )
if frame == nil {
break // 缓冲区中没有更多完整帧了
}
t . handleFrame ( frame )
}
// 4. 根据当前状态执行主要逻辑
switch t . state {
case stateIdle :
t . runIdleState ( )
case stateReceiving :
t . runReceivingState ( )
}
}
}
// runIdleState 处理空闲状态下的逻辑,主要是检查并启动发送任务
func ( t * LoRaMeshUartPassthroughTransport ) runIdleState ( ) {
select {
case req := <- t . sendChan :
t . state = stateSending
// 此处为阻塞式发送
result , err := t . executeSend ( req )
req . result <- & sendResultTuple { result : result , err : err }
t . state = stateIdle
default :
// 没有发送任务,保持空闲
}
}
// runReceivingState 处理接收状态下的逻辑,主要是检查超时
func ( t * LoRaMeshUartPassthroughTransport ) runReceivingState ( ) {
select {
case sourceAddr := <- t . reassemblyTimeoutCh :
t . logger . Warnf ( "接收来自 0x%04X 的消息超时" , sourceAddr )
delete ( t . reassemblyBuffers , sourceAddr )
t . state = stateIdle
default :
// 等待更多分片或超时
}
}
// executeSend 执行完整的发送流程(分片、构建、写入)
func ( t * LoRaMeshUartPassthroughTransport ) executeSend ( req * sendRequest ) ( * transport . SendResult , error ) {
chunks := splitPayload ( req . payload , t . config . MaxChunkSize )
totalChunks := uint8 ( len ( chunks ) )
destAddr , err := strconv . ParseUint ( req . address , 16 , 16 )
if err != nil {
return nil , fmt . Errorf ( "无效的目标地址: %s" , req . address )
}
for i , chunk := range chunks {
currentChunk := uint8 ( i )
frame := new ( bytes . Buffer )
frame . WriteByte ( 0xED ) // 帧头
frame . WriteByte ( uint8 ( len ( chunk ) + 2 ) ) // 数据长度 = 数据块 + 2 (总包数+当前包序号)
binary . Write ( frame , binary . BigEndian , uint16 ( destAddr ) ) // 目标地址
frame . WriteByte ( totalChunks ) // 总包数
frame . WriteByte ( currentChunk ) // 当前包序号
frame . Write ( chunk ) // 数据块
_ , err := t . port . Write ( frame . Bytes ( ) )
if err != nil {
return nil , fmt . Errorf ( "写入串口失败: %w" , err )
}
}
msgID := uuid . New ( ) . String ( )
return & transport . SendResult { MessageID : msgID } , nil
}
// handleFrame 处理一个从串口解析出的完整物理帧
func ( t * LoRaMeshUartPassthroughTransport ) handleFrame ( frame [ ] byte ) {
if len ( frame ) < 8 {
t . logger . Warnf ( "收到了一个无效长度的帧: %d" , len ( frame ) )
return
}
destAddr := binary . BigEndian . Uint16 ( frame [ 2 : 4 ] )
totalChunks := frame [ 4 ]
currentChunk := frame [ 5 ]
sourceAddr := binary . BigEndian . Uint16 ( frame [ len ( frame ) - 2 : ] )
chunkData := frame [ 6 : len ( frame ) - 2 ]
// 如果是单包消息
if totalChunks == 1 {
msg := & message {
SourceAddr : fmt . Sprintf ( "%04X" , sourceAddr ) ,
DestAddr : fmt . Sprintf ( "%04X" , destAddr ) ,
Payload : chunkData ,
}
go t . handleUpstreamMessage ( msg )
return
}
// --- 处理分片消息 ---
switch t . state {
case stateIdle :
if currentChunk == 0 {
t . state = stateReceiving
t . currentRecvSource = sourceAddr
t . reassemblyBuffers [ sourceAddr ] = & reassemblyBuffer {
chunks : make ( map [ uint8 ] [ ] byte ) ,
totalChunks : totalChunks ,
receivedChunks : 0 ,
}
t . reassemblyBuffers [ sourceAddr ] . chunks [ currentChunk ] = chunkData
t . reassemblyBuffers [ sourceAddr ] . receivedChunks ++
if t . reassemblyTimeout != nil {
t . reassemblyTimeout . Stop ( )
}
t . reassemblyTimeout = time . AfterFunc ( time . Duration ( t . config . ReassemblyTimeout ) * time . Second , func ( ) {
t . reassemblyTimeoutCh <- sourceAddr
} )
} else {
t . logger . Warnf ( "在空闲状态下收到了一个来自 0x%04X 的非首包分片,已忽略。" , sourceAddr )
}
case stateReceiving :
if sourceAddr != t . currentRecvSource {
t . logger . Warnf ( "正在接收来自 0x%04X 的数据时,收到了另一个源 0x%04X 的分片,已忽略。" , t . currentRecvSource , sourceAddr )
return
}
buffer , ok := t . reassemblyBuffers [ sourceAddr ]
if ! ok {
t . logger . Errorf ( "内部错误: 处于接收状态,但没有为 0x%04X 找到缓冲区" , sourceAddr )
t . state = stateIdle // 重置状态
return
}
// 存入分片并重置超时
buffer . chunks [ currentChunk ] = chunkData
buffer . receivedChunks ++
t . reassemblyTimeout . Reset ( time . Duration ( t . config . ReassemblyTimeout ) * time . Second )
// 检查是否已全部收到
if buffer . receivedChunks == int ( buffer . totalChunks ) {
t . reassemblyTimeout . Stop ( )
// 重组消息
fullPayload := new ( bytes . Buffer )
for i := 0 ; i < int ( buffer . totalChunks ) ; i ++ {
fullPayload . Write ( buffer . chunks [ uint8 ( i ) ] )
}
msg := & message {
SourceAddr : fmt . Sprintf ( "%04X" , sourceAddr ) ,
DestAddr : fmt . Sprintf ( "%04X" , destAddr ) ,
Payload : fullPayload . Bytes ( ) ,
}
go t . handleUpstreamMessage ( msg )
// 清理并返回空闲状态
delete ( t . reassemblyBuffers , sourceAddr )
t . state = stateIdle
}
}
}
// handleUpstreamMessage 在独立的协程中处理单个上行的、完整的消息。
func ( t * LoRaMeshUartPassthroughTransport ) handleUpstreamMessage ( msg * message ) {
t . logger . Infof ( "开始处理来自 %s 的上行消息" , msg . SourceAddr )
// 1. 解析外层 "信封"
var instruction proto . Instruction
if err := gproto . Unmarshal ( msg . Payload , & instruction ) ; err != nil {
t . logger . Errorf ( "解析上行 Instruction Protobuf 失败: %v, 源地址: %s, 原始数据: %x" , err , msg . SourceAddr , msg . Payload )
return
}
// 2. 使用 type switch 从 oneof payload 中提取 CollectResult
var collectResp * proto . CollectResult
switch p := instruction . GetPayload ( ) . ( type ) {
case * proto . Instruction_CollectResult :
collectResp = p . CollectResult
default :
// 如果上行的数据不是采集结果,记录日志并忽略
t . logger . Infof ( "收到一个非采集响应的上行指令 (类型: %T),无需处理。源地址: %s" , p , msg . SourceAddr )
return
}
if collectResp == nil {
t . logger . Errorf ( "从 Instruction 中提取的 CollectResult 为 nil。源地址: %s" , msg . SourceAddr )
return
}
correlationID := collectResp . CorrelationId
t . logger . Infof ( "成功解析采集响应 (CorrelationID: %s),包含 %d 个值。" , correlationID , len ( collectResp . Values ) )
// 3. 查找区域主控 (注意: LoRa Mesh 的 SourceAddr 对应于区域主控的 NetworkID)
regionalController , err := t . areaControllerRepo . FindByNetworkID ( msg . SourceAddr )
if err != nil {
t . logger . Errorf ( "处理上行消息失败:无法通过源地址 '%s' 找到区域主控设备: %v" , msg . SourceAddr , err )
return
}
if err := regionalController . SelfCheck ( ) ; err != nil {
t . logger . Errorf ( "处理上行消息失败:区域主控 %v(ID: %d) 未通过自检: %v" , regionalController . Name , regionalController . ID , err )
return
}
// 4. 根据 CorrelationID 查找待处理请求
pendingReq , err := t . pendingCollectionRepo . FindByCorrelationID ( correlationID )
if err != nil {
t . logger . Errorf ( "处理采集响应失败:无法找到待处理请求 (CorrelationID: %s): %v" , correlationID , err )
return
}
// 检查状态,防止重复处理
if pendingReq . Status != models . PendingStatusPending && pendingReq . Status != models . PendingStatusTimedOut {
t . logger . Warnf ( "收到一个已处理过的采集响应 (CorrelationID: %s, Status: %s),将忽略。" , correlationID , pendingReq . Status )
return
}
// 5. 匹配数据并存入数据库
deviceIDs := pendingReq . CommandMetadata
values := collectResp . Values
if len ( deviceIDs ) != len ( values ) {
t . logger . Errorf ( "数据不匹配:下行指令要求采集 %d 个设备,但上行响应包含 %d 个值 (CorrelationID: %s)" , len ( deviceIDs ) , len ( values ) , correlationID )
err = t . pendingCollectionRepo . UpdateStatusToFulfilled ( correlationID , time . Now ( ) )
if err != nil {
t . logger . Errorf ( "处理采集响应失败:无法更新待处理请求 (CorrelationID: %s) 的状态为完成: %v" , correlationID , err )
}
return
}
for i , deviceID := range deviceIDs {
rawSensorValue := values [ i ]
if math . IsNaN ( float64 ( rawSensorValue ) ) {
t . logger . Warnf ( "设备 (ID: %d) 上报了一个无效的 NaN 值,已跳过当前值的记录。" , deviceID )
continue
}
dev , err := t . deviceRepo . FindByID ( deviceID )
if err != nil {
t . logger . Errorf ( "处理采集数据失败:无法找到设备 (ID: %d): %v" , deviceID , err )
continue
}
if err := dev . SelfCheck ( ) ; err != nil {
t . logger . Warnf ( "跳过设备 %d, 因其未通过自检: %v" , dev . ID , err )
continue
}
if err := dev . DeviceTemplate . SelfCheck ( ) ; err != nil {
t . logger . Warnf ( "跳过设备 %d, 因其设备模板未通过自检: %v" , dev . ID , err )
continue
}
var valueDescriptors [ ] * models . ValueDescriptor
if err := dev . DeviceTemplate . ParseValues ( & valueDescriptors ) ; err != nil {
t . logger . Warnf ( "跳过设备 %d, 因其设备模板的 Values 属性解析失败: %v" , dev . ID , err )
continue
}
if len ( valueDescriptors ) == 0 {
t . logger . Warnf ( "跳过设备 %d, 因其设备模板缺少 ValueDescriptor 定义" , dev . ID )
continue
}
valueDescriptor := valueDescriptors [ 0 ]
parsedValue := float64 ( rawSensorValue ) * valueDescriptor . Multiplier + valueDescriptor . Offset
var dataToRecord interface { }
switch valueDescriptor . Type {
case models . SensorTypeTemperature :
dataToRecord = models . TemperatureData { TemperatureCelsius : parsedValue }
case models . SensorTypeHumidity :
dataToRecord = models . HumidityData { HumidityPercent : parsedValue }
case models . SensorTypeWeight :
dataToRecord = models . WeightData { WeightKilograms : parsedValue }
default :
t . logger . Warnf ( "未知的传感器类型 '%s',将使用通用格式记录" , valueDescriptor . Type )
dataToRecord = map [ string ] float64 { "value" : parsedValue }
}
t . recordSensorData ( regionalController . ID , dev . ID , time . Now ( ) , valueDescriptor . Type , dataToRecord )
t . logger . Infof ( "成功记录传感器数据: 设备ID=%d, 类型=%s, 原始值=%f, 解析值=%.2f" , dev . ID , valueDescriptor . Type , rawSensorValue , parsedValue )
}
// 6. 更新请求状态为“已完成”
if err := t . pendingCollectionRepo . UpdateStatusToFulfilled ( correlationID , time . Now ( ) ) ; err != nil {
t . logger . Errorf ( "更新待采集请求状态为 'fulfilled' 失败 (CorrelationID: %s): %v" , correlationID , err )
} else {
t . logger . Infof ( "成功完成并关闭采集请求 (CorrelationID: %s)" , correlationID )
}
}
// recordSensorData 是一个通用方法,用于将传感器数据存入数据库。
func ( t * LoRaMeshUartPassthroughTransport ) recordSensorData ( regionalControllerID uint , sensorDeviceID uint , eventTime time . Time , sensorType models . SensorType , data interface { } ) {
jsonData , err := json . Marshal ( data )
if err != nil {
t . logger . Errorf ( "记录传感器数据失败:序列化数据为 JSON 时出错: %v" , err )
return
}
sensorData := & models . SensorData {
Time : eventTime ,
DeviceID : sensorDeviceID ,
RegionalControllerID : regionalControllerID ,
SensorType : sensorType ,
Data : datatypes . JSON ( jsonData ) ,
}
if err := t . sensorDataRepo . Create ( sensorData ) ; err != nil {
t . logger . Errorf ( "记录传感器数据失败:存入数据库时出错: %v" , err )
}
}
// parseCompleteFrame 实现粘包和半包处理
func ( t * LoRaMeshUartPassthroughTransport ) parseCompleteFrame ( buffer * bytes . Buffer ) [ ] byte {
for {
headerIndex := bytes . IndexByte ( buffer . Bytes ( ) , 0xED )
if headerIndex == - 1 {
return nil
}
buffer . Next ( headerIndex )
if buffer . Len ( ) < 2 {
return nil
}
lengthField := buffer . Bytes ( ) [ 1 ]
frameLength := 1 + 1 + 2 + int ( lengthField ) + 2
if buffer . Len ( ) < frameLength {
return nil
}
return buffer . Next ( frameLength )
}
}
// splitPayload 将数据块按最大长度进行切分
func splitPayload ( payload [ ] byte , maxChunkSize int ) [ ] [ ] byte {
if len ( payload ) == 0 {
return [ ] [ ] byte { { } }
}
var chunks [ ] [ ] byte
for i := 0 ; i < len ( payload ) ; i += maxChunkSize {
end := i + maxChunkSize
if end > len ( payload ) {
end = len ( payload )
}
chunks = append ( chunks , payload [ i : end ] )
}
return chunks
}