//go:build notmono || codec.notmono // Copyright (c) 2012-2020 Ugorji Nwoke. All rights reserved. // Use of this source code is governed by a MIT license found in the LICENSE file. package codec import ( "encoding" "io" "reflect" "strconv" "sync" "time" ) type helperDecDriver[T decDriver] struct{} // decFn encapsulates the captured variables and the encode function. // This way, we only do some calculations one times, and pass to the // code block that should be called (encapsulated in a function) // instead of executing the checks every time. type decFn[T decDriver] struct { i decFnInfo fd func(*decoder[T], *decFnInfo, reflect.Value) // _ [1]uint64 // padding (cache-aligned) } type decRtidFn[T decDriver] struct { rtid uintptr fn *decFn[T] } // ---- // Decoder reads and decodes an object from an input stream in a supported format. // // Decoder is NOT safe for concurrent use i.e. a Decoder cannot be used // concurrently in multiple goroutines. // // However, as Decoder could be allocation heavy to initialize, a Reset method is provided // so its state can be reused to decode new input streams repeatedly. // This is the idiomatic way to use. type decoder[T decDriver] struct { dh helperDecDriver[T] fp *fastpathDs[T] d T decoderBase } func (d *decoder[T]) rawExt(f *decFnInfo, rv reflect.Value) { d.d.DecodeRawExt(rv2i(rv).(*RawExt)) } func (d *decoder[T]) ext(f *decFnInfo, rv reflect.Value) { d.d.DecodeExt(rv2i(rv), f.ti.rt, f.xfTag, f.xfFn) } func (d *decoder[T]) selferUnmarshal(_ *decFnInfo, rv reflect.Value) { rv2i(rv).(Selfer).CodecDecodeSelf(&Decoder{d}) } func (d *decoder[T]) binaryUnmarshal(_ *decFnInfo, rv reflect.Value) { bm := rv2i(rv).(encoding.BinaryUnmarshaler) xbs, _ := d.d.DecodeBytes() fnerr := bm.UnmarshalBinary(xbs) halt.onerror(fnerr) } func (d *decoder[T]) textUnmarshal(_ *decFnInfo, rv reflect.Value) { tm := rv2i(rv).(encoding.TextUnmarshaler) fnerr := tm.UnmarshalText(bytesOKs(d.d.DecodeStringAsBytes())) halt.onerror(fnerr) } func (d *decoder[T]) jsonUnmarshal(_ *decFnInfo, rv reflect.Value) { d.jsonUnmarshalV(rv2i(rv).(jsonUnmarshaler)) } func (d *decoder[T]) jsonUnmarshalV(tm jsonUnmarshaler) { // grab the bytes to be read, as UnmarshalJSON needs the full JSON so as to unmarshal it itself. halt.onerror(tm.UnmarshalJSON(d.d.nextValueBytes())) } func (d *decoder[T]) kErr(_ *decFnInfo, rv reflect.Value) { halt.errorf("unsupported decoding kind: %s, for %#v", rv.Kind(), rv) // halt.errorStr2("no decoding function defined for kind: ", rv.Kind().String()) } func (d *decoder[T]) raw(_ *decFnInfo, rv reflect.Value) { rvSetBytes(rv, d.rawBytes()) } func (d *decoder[T]) kString(_ *decFnInfo, rv reflect.Value) { rvSetString(rv, d.detach2Str(d.d.DecodeStringAsBytes())) } func (d *decoder[T]) kBool(_ *decFnInfo, rv reflect.Value) { rvSetBool(rv, d.d.DecodeBool()) } func (d *decoder[T]) kTime(_ *decFnInfo, rv reflect.Value) { rvSetTime(rv, d.d.DecodeTime()) } func (d *decoder[T]) kFloat32(_ *decFnInfo, rv reflect.Value) { rvSetFloat32(rv, d.d.DecodeFloat32()) } func (d *decoder[T]) kFloat64(_ *decFnInfo, rv reflect.Value) { rvSetFloat64(rv, d.d.DecodeFloat64()) } func (d *decoder[T]) kComplex64(_ *decFnInfo, rv reflect.Value) { rvSetComplex64(rv, complex(d.d.DecodeFloat32(), 0)) } func (d *decoder[T]) kComplex128(_ *decFnInfo, rv reflect.Value) { rvSetComplex128(rv, complex(d.d.DecodeFloat64(), 0)) } func (d *decoder[T]) kInt(_ *decFnInfo, rv reflect.Value) { rvSetInt(rv, int(chkOvf.IntV(d.d.DecodeInt64(), intBitsize))) } func (d *decoder[T]) kInt8(_ *decFnInfo, rv reflect.Value) { rvSetInt8(rv, int8(chkOvf.IntV(d.d.DecodeInt64(), 8))) } func (d *decoder[T]) kInt16(_ *decFnInfo, rv reflect.Value) { rvSetInt16(rv, int16(chkOvf.IntV(d.d.DecodeInt64(), 16))) } func (d *decoder[T]) kInt32(_ *decFnInfo, rv reflect.Value) { rvSetInt32(rv, int32(chkOvf.IntV(d.d.DecodeInt64(), 32))) } func (d *decoder[T]) kInt64(_ *decFnInfo, rv reflect.Value) { rvSetInt64(rv, d.d.DecodeInt64()) } func (d *decoder[T]) kUint(_ *decFnInfo, rv reflect.Value) { rvSetUint(rv, uint(chkOvf.UintV(d.d.DecodeUint64(), uintBitsize))) } func (d *decoder[T]) kUintptr(_ *decFnInfo, rv reflect.Value) { rvSetUintptr(rv, uintptr(chkOvf.UintV(d.d.DecodeUint64(), uintBitsize))) } func (d *decoder[T]) kUint8(_ *decFnInfo, rv reflect.Value) { rvSetUint8(rv, uint8(chkOvf.UintV(d.d.DecodeUint64(), 8))) } func (d *decoder[T]) kUint16(_ *decFnInfo, rv reflect.Value) { rvSetUint16(rv, uint16(chkOvf.UintV(d.d.DecodeUint64(), 16))) } func (d *decoder[T]) kUint32(_ *decFnInfo, rv reflect.Value) { rvSetUint32(rv, uint32(chkOvf.UintV(d.d.DecodeUint64(), 32))) } func (d *decoder[T]) kUint64(_ *decFnInfo, rv reflect.Value) { rvSetUint64(rv, d.d.DecodeUint64()) } func (d *decoder[T]) kInterfaceNaked(f *decFnInfo) (rvn reflect.Value) { // nil interface: // use some hieristics to decode it appropriately // based on the detected next value in the stream. n := d.naked() d.d.DecodeNaked() // We cannot decode non-nil stream value into nil interface with methods (e.g. io.Reader). // Howver, it is possible that the user has ways to pass in a type for a given interface // - MapType // - SliceType // - Extensions // // Consequently, we should relax this. Put it behind a const flag for now. if decFailNonEmptyIntf && f.ti.numMeth > 0 { halt.errorf("cannot decode non-nil codec value into nil %v (%v methods)", f.ti.rt, f.ti.numMeth) } // We generally make a pointer to the container here, and pass along, // so that they will be initialized later when we know the length of the collection. switch n.v { case valueTypeMap: mtid := d.mtid if mtid == 0 { if d.jsms { // if json, default to a map type with string keys mtid = mapStrIntfTypId // for json performance } else { mtid = mapIntfIntfTypId } } if mtid == mapStrIntfTypId { var v2 map[string]interface{} d.decode(&v2) rvn = rv4iptr(&v2).Elem() } else if mtid == mapIntfIntfTypId { var v2 map[interface{}]interface{} d.decode(&v2) rvn = rv4iptr(&v2).Elem() } else if d.mtr { rvn = reflect.New(d.h.MapType) d.decode(rv2i(rvn)) rvn = rvn.Elem() } else { // // made map is fully initialized for direct modification. // // There's no need to make a pointer to it first. // rvn = makeMapReflect(d.h.MapType, 0) rvn = rvZeroAddrK(d.h.MapType, reflect.Map) d.decodeValue(rvn, nil) } case valueTypeArray: if d.stid == 0 || d.stid == intfSliceTypId { var v2 []interface{} d.decode(&v2) rvn = rv4iptr(&v2).Elem() } else if d.str { rvn = reflect.New(d.h.SliceType) d.decode(rv2i(rvn)) rvn = rvn.Elem() } else { rvn = rvZeroAddrK(d.h.SliceType, reflect.Slice) d.decodeValue(rvn, nil) } if d.h.PreferArrayOverSlice { rvn = rvGetArray4Slice(rvn) } case valueTypeExt: tag, bytes := n.u, n.l // calling decode below might taint the values bfn := d.h.getExtForTag(tag) var re = RawExt{Tag: tag} if bytes == nil { // one of the InterfaceExt ones: json and cbor. // (likely cbor, as json has no tagging support and won't reveal valueTypeExt) if bfn == nil { d.decode(&re.Value) rvn = rv4iptr(&re).Elem() } else if bfn.ext == SelfExt { rvn = rvZeroAddrK(bfn.rt, bfn.rt.Kind()) d.decodeValue(rvn, d.fnNoExt(bfn.rt)) } else { rvn = reflect.New(bfn.rt) d.interfaceExtConvertAndDecode(rv2i(rvn), bfn.ext) rvn = rvn.Elem() } } else { // one of the BytesExt ones: binc, msgpack, simple if bfn == nil { re.setData(bytes, false) rvn = rv4iptr(&re).Elem() } else { rvn = reflect.New(bfn.rt) if bfn.ext == SelfExt { sideDecode(d.hh, &d.h.sideDecPool, func(sd decoderI) { oneOffDecode(sd, rv2i(rvn), bytes, bfn.rt, true) }) } else { bfn.ext.ReadExt(rv2i(rvn), bytes) } rvn = rvn.Elem() } } // if struct/array, directly store pointer into the interface if d.h.PreferPointerForStructOrArray && rvn.CanAddr() { if rk := rvn.Kind(); rk == reflect.Array || rk == reflect.Struct { rvn = rvn.Addr() } } case valueTypeNil: // rvn = reflect.Zero(f.ti.rt) // no-op case valueTypeInt: rvn = n.ri() case valueTypeUint: rvn = n.ru() case valueTypeFloat: rvn = n.rf() case valueTypeBool: rvn = n.rb() case valueTypeString, valueTypeSymbol: rvn = n.rs() case valueTypeBytes: rvn = n.rl() case valueTypeTime: rvn = n.rt() default: halt.errorStr2("kInterfaceNaked: unexpected valueType: ", n.v.String()) } return } func (d *decoder[T]) kInterface(f *decFnInfo, rv reflect.Value) { // Note: A consequence of how kInterface works, is that // if an interface already contains something, we try // to decode into what was there before. // We do not replace with a generic value (as got from decodeNaked). // // every interface passed here MUST be settable. // // ensure you call rvSetIntf(...) before returning. isnilrv := rvIsNil(rv) var rvn reflect.Value if d.h.InterfaceReset { // check if mapping to a type: if so, initialize it and move on rvn = d.h.intf2impl(f.ti.rtid) if !rvn.IsValid() { rvn = d.kInterfaceNaked(f) if rvn.IsValid() { rvSetIntf(rv, rvn) } else if !isnilrv { decSetNonNilRV2Zero4Intf(rv) } return } } else if isnilrv { // check if mapping to a type: if so, initialize it and move on rvn = d.h.intf2impl(f.ti.rtid) if !rvn.IsValid() { rvn = d.kInterfaceNaked(f) if rvn.IsValid() { rvSetIntf(rv, rvn) } return } } else { // now we have a non-nil interface value, meaning it contains a type rvn = rv.Elem() } // rvn is now a non-interface type canDecode, _ := isDecodeable(rvn) // Note: interface{} is settable, but underlying type may not be. // Consequently, we MAY have to allocate a value (containing the underlying value), // decode into it, and reset the interface to that new value. if !canDecode { rvn2 := d.oneShotAddrRV(rvn.Type(), rvn.Kind()) rvSetDirect(rvn2, rvn) rvn = rvn2 } d.decodeValue(rvn, nil) rvSetIntf(rv, rvn) } func (d *decoder[T]) kStructField(si *structFieldInfo, rv reflect.Value) { if d.d.TryNil() { rv = si.fieldNoAlloc(rv, true) if rv.IsValid() { decSetNonNilRV2Zero(rv) } } else if si.decBuiltin { rv = rvAddr(si.fieldAlloc(rv), si.ptrTyp) d.decode(rv2i(rv)) } else { fn := d.fn(si.baseTyp) rv = si.fieldAlloc(rv) if fn.i.addrD { rv = rvAddr(rv, si.ptrTyp) } fn.fd(d, &fn.i, rv) } } func (d *decoder[T]) kStructSimple(f *decFnInfo, rv reflect.Value) { _ = d.d // early asserts d, d.d are not nil once ctyp := d.d.ContainerType() ti := f.ti if ctyp == valueTypeMap { containerLen := d.mapStart(d.d.ReadMapStart()) if containerLen == 0 { d.mapEnd() return } hasLen := containerLen >= 0 var rvkencname []byte for j := 0; d.containerNext(j, containerLen, hasLen); j++ { d.mapElemKey(j == 0) sab, att := d.d.DecodeStringAsBytes() rvkencname = d.usableStructFieldNameBytes(rvkencname, sab, att) d.mapElemValue() if si := ti.siForEncName(rvkencname); si != nil { d.kStructField(si, rv) } else { d.structFieldNotFound(-1, stringView(rvkencname)) } } d.mapEnd() } else if ctyp == valueTypeArray { containerLen := d.arrayStart(d.d.ReadArrayStart()) if containerLen == 0 { d.arrayEnd() return } // Not much gain from doing it two ways for array (used less frequently than structs). tisfi := ti.sfi.source() hasLen := containerLen >= 0 // iterate all the items in the stream. // - if mapped elem-wise to a field, handle it // - if more stream items than can be mapped, error it for j := 0; d.containerNext(j, containerLen, hasLen); j++ { d.arrayElem(j == 0) if j < len(tisfi) { d.kStructField(tisfi[j], rv) } else { d.structFieldNotFound(j, "") } } d.arrayEnd() } else { halt.onerror(errNeedMapOrArrayDecodeToStruct) } } func (d *decoder[T]) kStruct(f *decFnInfo, rv reflect.Value) { _ = d.d // early asserts d, d.d are not nil once ctyp := d.d.ContainerType() ti := f.ti var mf MissingFielder if ti.flagMissingFielder { mf = rv2i(rv).(MissingFielder) } else if ti.flagMissingFielderPtr { mf = rv2i(rvAddr(rv, ti.ptr)).(MissingFielder) } if ctyp == valueTypeMap { containerLen := d.mapStart(d.d.ReadMapStart()) if containerLen == 0 { d.mapEnd() return } hasLen := containerLen >= 0 var name2 []byte var rvkencname []byte tkt := ti.keyType for j := 0; d.containerNext(j, containerLen, hasLen); j++ { d.mapElemKey(j == 0) // use if-else since <8 branches and we need good branch prediction for string if tkt == valueTypeString { sab, att := d.d.DecodeStringAsBytes() rvkencname = d.usableStructFieldNameBytes(rvkencname, sab, att) } else if tkt == valueTypeInt { rvkencname = strconv.AppendInt(d.b[:0], d.d.DecodeInt64(), 10) } else if tkt == valueTypeUint { rvkencname = strconv.AppendUint(d.b[:0], d.d.DecodeUint64(), 10) } else if tkt == valueTypeFloat { rvkencname = strconv.AppendFloat(d.b[:0], d.d.DecodeFloat64(), 'f', -1, 64) } else { halt.errorStr2("invalid struct key type: ", ti.keyType.String()) } d.mapElemValue() if si := ti.siForEncName(rvkencname); si != nil { d.kStructField(si, rv) } else if mf != nil { // store rvkencname in new []byte, as it previously shares Decoder.b, which is used in decode name2 = append(name2[:0], rvkencname...) var f interface{} d.decode(&f) if !mf.CodecMissingField(name2, f) && d.h.ErrorIfNoField { halt.errorStr2("no matching struct field when decoding stream map with key: ", stringView(name2)) } } else { d.structFieldNotFound(-1, stringView(rvkencname)) } } d.mapEnd() } else if ctyp == valueTypeArray { containerLen := d.arrayStart(d.d.ReadArrayStart()) if containerLen == 0 { d.arrayEnd() return } // Not much gain from doing it two ways for array. // Arrays are not used as much for structs. tisfi := ti.sfi.source() hasLen := containerLen >= 0 // iterate all the items in the stream // if mapped elem-wise to a field, handle it // if more stream items than can be mapped, error it for j := 0; d.containerNext(j, containerLen, hasLen); j++ { d.arrayElem(j == 0) if j < len(tisfi) { d.kStructField(tisfi[j], rv) } else { d.structFieldNotFound(j, "") } } d.arrayEnd() } else { halt.onerror(errNeedMapOrArrayDecodeToStruct) } } func (d *decoder[T]) kSlice(f *decFnInfo, rv reflect.Value) { _ = d.d // early asserts d, d.d are not nil once // A slice can be set from a map or array in stream. // This way, the order can be kept (as order is lost with map). // Note: rv is a slice type here - guaranteed ti := f.ti rvCanset := rv.CanSet() ctyp := d.d.ContainerType() if ctyp == valueTypeBytes || ctyp == valueTypeString { // you can only decode bytes or string in the stream into a slice or array of bytes if !(ti.rtid == uint8SliceTypId || ti.elemkind == uint8(reflect.Uint8)) { halt.errorf("bytes/string in stream must decode into slice/array of bytes, not %v", ti.rt) } rvbs := rvGetBytes(rv) if rvCanset { bs2, bst := d.decodeBytesInto(rvbs, false) if bst != dBytesIntoParamOut { rvSetBytes(rv, bs2) } } else { // not addressable byte slice, so do not decode into it past the length d.decodeBytesInto(rvbs[:len(rvbs):len(rvbs)], true) } return } // only expects valueType(Array|Map) - never Nil var containerLenS int isArray := ctyp == valueTypeArray if isArray { containerLenS = d.arrayStart(d.d.ReadArrayStart()) } else if ctyp == valueTypeMap { containerLenS = d.mapStart(d.d.ReadMapStart()) * 2 } else { halt.errorStr2("decoding into a slice, expect map/array - got ", ctyp.String()) } // an array can never return a nil slice. so no need to check f.array here. if containerLenS == 0 { if rvCanset { if rvIsNil(rv) { rvSetDirect(rv, rvSliceZeroCap(ti.rt)) } else { rvSetSliceLen(rv, 0) } } if isArray { d.arrayEnd() } else { d.mapEnd() } return } rtelem0Mut := !scalarBitset.isset(ti.elemkind) rtelem := ti.elem for k := reflect.Kind(ti.elemkind); k == reflect.Ptr; k = rtelem.Kind() { rtelem = rtelem.Elem() } var fn *decFn[T] var rvChanged bool var rv0 = rv var rv9 reflect.Value rvlen := rvLenSlice(rv) rvcap := rvCapSlice(rv) maxInitLen := d.maxInitLen() hasLen := containerLenS >= 0 if hasLen { if containerLenS > rvcap { oldRvlenGtZero := rvlen > 0 rvlen1 := int(decInferLen(containerLenS, maxInitLen, uint(ti.elemsize))) if rvlen1 == rvlen { } else if rvlen1 <= rvcap { if rvCanset { rvlen = rvlen1 rvSetSliceLen(rv, rvlen) } } else if rvCanset { // rvlen1 > rvcap rvlen = rvlen1 rv, rvCanset = rvMakeSlice(rv, f.ti, rvlen, rvlen) rvcap = rvlen rvChanged = !rvCanset } else { // rvlen1 > rvcap && !canSet halt.errorStr("cannot decode into non-settable slice") } if rvChanged && oldRvlenGtZero && rtelem0Mut { rvCopySlice(rv, rv0, rtelem) // only copy up to length NOT cap i.e. rv0.Slice(0, rvcap) } } else if containerLenS != rvlen { if rvCanset { rvlen = containerLenS rvSetSliceLen(rv, rvlen) } } } // consider creating new element once, and just decoding into it. var elemReset = d.h.SliceElementReset // when decoding into slices, there may be more values in the stream than the slice length. // decodeValue handles this better when coming from an addressable value (known to reflect.Value). // Consequently, builtin handling skips slices. var rtelemIsPtr bool var rtelemElem reflect.Type builtin := ti.tielem.flagDecBuiltin if builtin { rtelemIsPtr = ti.elemkind == uint8(reflect.Ptr) if rtelemIsPtr { rtelemElem = ti.elem.Elem() } } var j int for ; d.containerNext(j, containerLenS, hasLen); j++ { if j == 0 { if rvIsNil(rv) { // means hasLen = false if rvCanset { rvlen = int(decInferLen(containerLenS, maxInitLen, uint(ti.elemsize))) rv, rvCanset = rvMakeSlice(rv, f.ti, rvlen, rvlen) rvcap = rvlen rvChanged = !rvCanset } else { halt.errorStr("cannot decode into non-settable slice") } } if fn == nil { fn = d.fn(rtelem) } } if ctyp == valueTypeArray { d.arrayElem(j == 0) } else if j&1 == 0 { d.mapElemKey(j == 0) } else { d.mapElemValue() } // if indefinite, etc, then expand the slice if necessary if j >= rvlen { // expand the slice up to the cap. // Note that we did, so we have to reset it later. if rvlen < rvcap { rvlen = rvcap if rvCanset { rvSetSliceLen(rv, rvlen) } else if rvChanged { rv = rvSlice(rv, rvlen) } else { halt.onerror(errExpandSliceCannotChange) } } else { if !(rvCanset || rvChanged) { halt.onerror(errExpandSliceCannotChange) } rv, rvcap, rvCanset = rvGrowSlice(rv, f.ti, rvcap, 1) // note: 1 requested is hint/minimum - new capacity with more space rvlen = rvcap rvChanged = !rvCanset } } // we check if we can make this an addr, and do builtin // e.g. if []ints, then fastpath should handle it? // but if not, we should treat it as each element is *int, and decode into it. rv9 = rvArrayIndex(rv, j, f.ti, true) if elemReset { rvSetZero(rv9) } if d.d.TryNil() { rvSetZero(rv9) } else if builtin { if rtelemIsPtr { if rvIsNil(rv9) { rvSetDirect(rv9, reflect.New(rtelemElem)) } d.decode(rv2i(rv9)) } else { d.decode(rv2i(rvAddr(rv9, ti.tielem.ptr))) // d.decode(rv2i(rv9.Addr())) } } else { d.decodeValueNoCheckNil(rv9, fn) } } if j < rvlen { if rvCanset { rvSetSliceLen(rv, j) } else if rvChanged { rv = rvSlice(rv, j) } // rvlen = j } else if j == 0 && rvIsNil(rv) { if rvCanset { rv = rvSliceZeroCap(ti.rt) rvCanset = false rvChanged = true } } if isArray { d.arrayEnd() } else { d.mapEnd() } if rvChanged { // infers rvCanset=true, so it can be reset rvSetDirect(rv0, rv) } } func (d *decoder[T]) kArray(f *decFnInfo, rv reflect.Value) { _ = d.d // early asserts d, d.d are not nil once // An array can be set from a map or array in stream. ti := f.ti ctyp := d.d.ContainerType() if handleBytesWithinKArray && (ctyp == valueTypeBytes || ctyp == valueTypeString) { // you can only decode bytes or string in the stream into a slice or array of bytes if ti.elemkind != uint8(reflect.Uint8) { halt.errorf("bytes/string in stream can decode into array of bytes, but not %v", ti.rt) } rvbs := rvGetArrayBytes(rv, nil) d.decodeBytesInto(rvbs, true) return } // only expects valueType(Array|Map) - never Nil var containerLenS int isArray := ctyp == valueTypeArray if isArray { containerLenS = d.arrayStart(d.d.ReadArrayStart()) } else if ctyp == valueTypeMap { containerLenS = d.mapStart(d.d.ReadMapStart()) * 2 } else { halt.errorStr2("decoding into a slice, expect map/array - got ", ctyp.String()) } // an array can never return a nil slice. so no need to check f.array here. if containerLenS == 0 { if isArray { d.arrayEnd() } else { d.mapEnd() } return } rtelem := ti.elem for k := reflect.Kind(ti.elemkind); k == reflect.Ptr; k = rtelem.Kind() { rtelem = rtelem.Elem() } var rv9 reflect.Value rvlen := rv.Len() // same as cap hasLen := containerLenS >= 0 if hasLen && containerLenS > rvlen { halt.errorf("cannot decode into array with length: %v, less than container length: %v", any(rvlen), any(containerLenS)) } // consider creating new element once, and just decoding into it. var elemReset = d.h.SliceElementReset var rtelemIsPtr bool var rtelemElem reflect.Type var fn *decFn[T] builtin := ti.tielem.flagDecBuiltin if builtin { rtelemIsPtr = ti.elemkind == uint8(reflect.Ptr) if rtelemIsPtr { rtelemElem = ti.elem.Elem() } } else { fn = d.fn(rtelem) } for j := 0; d.containerNext(j, containerLenS, hasLen); j++ { if ctyp == valueTypeArray { d.arrayElem(j == 0) } else if j&1 == 0 { d.mapElemKey(j == 0) } else { d.mapElemValue() } // note that you cannot expand the array if indefinite and we go past array length if j >= rvlen { d.arrayCannotExpand(rvlen, j+1) d.swallow() continue } rv9 = rvArrayIndex(rv, j, f.ti, false) if elemReset { rvSetZero(rv9) } if d.d.TryNil() { rvSetZero(rv9) } else if builtin { if rtelemIsPtr { if rvIsNil(rv9) { rvSetDirect(rv9, reflect.New(rtelemElem)) } d.decode(rv2i(rv9)) } else { d.decode(rv2i(rvAddr(rv9, ti.tielem.ptr))) // d.decode(rv2i(rv9.Addr())) } } else { d.decodeValueNoCheckNil(rv9, fn) } } if isArray { d.arrayEnd() } else { d.mapEnd() } } func (d *decoder[T]) kChan(f *decFnInfo, rv reflect.Value) { _ = d.d // early asserts d, d.d are not nil once // A slice can be set from a map or array in stream. // This way, the order can be kept (as order is lost with map). ti := f.ti if ti.chandir&uint8(reflect.SendDir) == 0 { halt.errorStr("receive-only channel cannot be decoded") } ctyp := d.d.ContainerType() if ctyp == valueTypeBytes || ctyp == valueTypeString { // you can only decode bytes or string in the stream into a slice or array of bytes if !(ti.rtid == uint8SliceTypId || ti.elemkind == uint8(reflect.Uint8)) { halt.errorf("bytes/string in stream must decode into slice/array of bytes, not %v", ti.rt) } bs2, _ := d.d.DecodeBytes() irv := rv2i(rv) ch, ok := irv.(chan<- byte) if !ok { ch = irv.(chan byte) } for _, b := range bs2 { ch <- b } return } var rvCanset = rv.CanSet() // only expects valueType(Array|Map) - never Nil var containerLenS int isArray := ctyp == valueTypeArray if isArray { containerLenS = d.arrayStart(d.d.ReadArrayStart()) } else if ctyp == valueTypeMap { containerLenS = d.mapStart(d.d.ReadMapStart()) * 2 } else { halt.errorStr2("decoding into a slice, expect map/array - got ", ctyp.String()) } // an array can never return a nil slice. so no need to check f.array here. if containerLenS == 0 { if rvCanset && rvIsNil(rv) { rvSetDirect(rv, reflect.MakeChan(ti.rt, 0)) } if isArray { d.arrayEnd() } else { d.mapEnd() } return } rtelem := ti.elem useTransient := decUseTransient && ti.elemkind != byte(reflect.Ptr) && ti.tielem.flagCanTransient for k := reflect.Kind(ti.elemkind); k == reflect.Ptr; k = rtelem.Kind() { rtelem = rtelem.Elem() } var fn *decFn[T] var rvChanged bool var rv0 = rv var rv9 reflect.Value var rvlen int // = rv.Len() hasLen := containerLenS >= 0 maxInitLen := d.maxInitLen() for j := 0; d.containerNext(j, containerLenS, hasLen); j++ { if j == 0 { if rvIsNil(rv) { if hasLen { rvlen = int(decInferLen(containerLenS, maxInitLen, uint(ti.elemsize))) } else { rvlen = decDefChanCap } if rvCanset { rv = reflect.MakeChan(ti.rt, rvlen) rvChanged = true } else { halt.errorStr("cannot decode into non-settable chan") } } if fn == nil { fn = d.fn(rtelem) } } if ctyp == valueTypeArray { d.arrayElem(j == 0) } else if j&1 == 0 { d.mapElemKey(j == 0) } else { d.mapElemValue() } if rv9.IsValid() { rvSetZero(rv9) } else if useTransient { rv9 = d.perType.TransientAddrK(ti.elem, reflect.Kind(ti.elemkind)) } else { rv9 = rvZeroAddrK(ti.elem, reflect.Kind(ti.elemkind)) } if !d.d.TryNil() { d.decodeValueNoCheckNil(rv9, fn) } rv.Send(rv9) } if isArray { d.arrayEnd() } else { d.mapEnd() } if rvChanged { // infers rvCanset=true, so it can be reset rvSetDirect(rv0, rv) } } func (d *decoder[T]) kMap(f *decFnInfo, rv reflect.Value) { _ = d.d // early asserts d, d.d are not nil once containerLen := d.mapStart(d.d.ReadMapStart()) ti := f.ti if rvIsNil(rv) { rvlen := int(decInferLen(containerLen, d.maxInitLen(), uint(ti.keysize+ti.elemsize))) rvSetDirect(rv, makeMapReflect(ti.rt, rvlen)) } if containerLen == 0 { d.mapEnd() return } ktype, vtype := ti.key, ti.elem ktypeId := rt2id(ktype) vtypeKind := reflect.Kind(ti.elemkind) ktypeKind := reflect.Kind(ti.keykind) mparams := getMapReqParams(ti) // kfast := mapKeyFastKindFor(ktypeKind) // visindirect := mapStoresElemIndirect(uintptr(ti.elemsize)) // visref := refBitset.isset(ti.elemkind) vtypePtr := vtypeKind == reflect.Ptr ktypePtr := ktypeKind == reflect.Ptr vTransient := decUseTransient && !vtypePtr && ti.tielem.flagCanTransient // keys are transient iff values are transient first kTransient := vTransient && !ktypePtr && ti.tikey.flagCanTransient var vtypeElem reflect.Type var keyFn, valFn *decFn[T] var ktypeLo, vtypeLo = ktype, vtype if ktypeKind == reflect.Ptr { for ktypeLo = ktype.Elem(); ktypeLo.Kind() == reflect.Ptr; ktypeLo = ktypeLo.Elem() { } } if vtypePtr { vtypeElem = vtype.Elem() for vtypeLo = vtypeElem; vtypeLo.Kind() == reflect.Ptr; vtypeLo = vtypeLo.Elem() { } } rvkMut := !scalarBitset.isset(ti.keykind) // if ktype is immutable, then re-use the same rvk. rvvMut := !scalarBitset.isset(ti.elemkind) rvvCanNil := isnilBitset.isset(ti.elemkind) // rvk: key // rvkn: if non-mutable, on each iteration of loop, set rvk to this // rvv: value // rvvn: if non-mutable, on each iteration of loop, set rvv to this // if mutable, may be used as a temporary value for local-scoped operations // rvva: if mutable, used as transient value for use for key lookup // rvvz: zero value of map value type, used to do a map set when nil is found in stream var rvk, rvkn, rvv, rvvn, rvva, rvvz reflect.Value // we do a doMapGet if kind is mutable, and InterfaceReset=true if interface var doMapGet, doMapSet bool if !d.h.MapValueReset { if rvvMut && (vtypeKind != reflect.Interface || !d.h.InterfaceReset) { doMapGet = true rvva = mapAddrLoopvarRV(vtype, vtypeKind) } } ktypeIsString := ktypeId == stringTypId ktypeIsIntf := ktypeId == intfTypId hasLen := containerLen >= 0 var kstr2bs []byte var kstr string var mapKeyStringSharesBytesBuf bool var att dBytesAttachState // Use a possibly transient (map) value (and key), to reduce allocation // when decoding into slices, there may be more values in the stream than the slice length. // decodeValue handles this better when coming from an addressable value (known to reflect.Value). // Consequently, builtin handling skips slices. var vElem, kElem reflect.Type kbuiltin := ti.tikey.flagDecBuiltin && ti.keykind != uint8(reflect.Slice) vbuiltin := ti.tielem.flagDecBuiltin // && ti.elemkind != uint8(reflect.Slice) if kbuiltin && ktypePtr { kElem = ti.key.Elem() } if vbuiltin && vtypePtr { vElem = ti.elem.Elem() } for j := 0; d.containerNext(j, containerLen, hasLen); j++ { mapKeyStringSharesBytesBuf = false kstr = "" if j == 0 { // if vtypekind is a scalar and thus value will be decoded using TransientAddrK, // then it is ok to use TransientAddr2K for the map key. if kTransient { rvk = d.perType.TransientAddr2K(ktype, ktypeKind) } else { rvk = rvZeroAddrK(ktype, ktypeKind) } if !rvkMut { rvkn = rvk } if !rvvMut { if vTransient { rvvn = d.perType.TransientAddrK(vtype, vtypeKind) } else { rvvn = rvZeroAddrK(vtype, vtypeKind) } } if !ktypeIsString && keyFn == nil { keyFn = d.fn(ktypeLo) } if valFn == nil { valFn = d.fn(vtypeLo) } } else if rvkMut { rvSetZero(rvk) } else { rvk = rvkn } d.mapElemKey(j == 0) if d.d.TryNil() { rvSetZero(rvk) } else if ktypeIsString { kstr2bs, att = d.d.DecodeStringAsBytes() kstr, mapKeyStringSharesBytesBuf = d.bytes2Str(kstr2bs, att) rvSetString(rvk, kstr) } else { if kbuiltin { if ktypePtr { if rvIsNil(rvk) { rvSetDirect(rvk, reflect.New(kElem)) } d.decode(rv2i(rvk)) } else { d.decode(rv2i(rvAddr(rvk, ti.tikey.ptr))) } } else { d.decodeValueNoCheckNil(rvk, keyFn) } // special case if interface wrapping a byte slice if ktypeIsIntf { if rvk2 := rvk.Elem(); rvk2.IsValid() && rvk2.Type() == uint8SliceTyp { kstr2bs = rvGetBytes(rvk2) kstr, mapKeyStringSharesBytesBuf = d.bytes2Str(kstr2bs, dBytesAttachView) rvSetIntf(rvk, rv4istr(kstr)) } // NOTE: consider failing early if map/slice/func } } // TryNil will try to read from the stream and check if a nil marker. // // When using ioDecReader (specifically in bufio mode), this TryNil call could // override part of the buffer used for the string key. // // To mitigate this, we do a special check for ioDecReader in bufio mode. if mapKeyStringSharesBytesBuf && d.bufio { if ktypeIsString { rvSetString(rvk, d.detach2Str(kstr2bs, att)) } else { // ktypeIsIntf rvSetIntf(rvk, rv4istr(d.detach2Str(kstr2bs, att))) } mapKeyStringSharesBytesBuf = false } d.mapElemValue() if d.d.TryNil() { if mapKeyStringSharesBytesBuf { if ktypeIsString { rvSetString(rvk, d.detach2Str(kstr2bs, att)) } else { // ktypeIsIntf rvSetIntf(rvk, rv4istr(d.detach2Str(kstr2bs, att))) } } // since a map, we have to set zero value if needed if !rvvz.IsValid() { rvvz = rvZeroK(vtype, vtypeKind) } mapSet(rv, rvk, rvvz, mparams) continue } // there is non-nil content in the stream to decode ... // consequently, it's ok to just directly create new value to the pointer (if vtypePtr) // set doMapSet to false iff u do a get, and the return value is a non-nil pointer doMapSet = true if !rvvMut { rvv = rvvn } else if !doMapGet { goto NEW_RVV } else { rvv = mapGet(rv, rvk, rvva, mparams) if !rvv.IsValid() || (rvvCanNil && rvIsNil(rvv)) { goto NEW_RVV } switch vtypeKind { case reflect.Ptr, reflect.Map: // ok to decode directly into map doMapSet = false case reflect.Interface: // if an interface{}, just decode into it iff a non-nil ptr/map, else allocate afresh rvvn = rvv.Elem() if k := rvvn.Kind(); (k == reflect.Ptr || k == reflect.Map) && !rvIsNil(rvvn) { d.decodeValueNoCheckNil(rvvn, nil) // valFn is incorrect here continue } // make addressable (so we can set the interface) rvvn = rvZeroAddrK(vtype, vtypeKind) rvSetIntf(rvvn, rvv) rvv = rvvn default: // make addressable (so you can set the slice/array elements, etc) if vTransient { rvvn = d.perType.TransientAddrK(vtype, vtypeKind) } else { rvvn = rvZeroAddrK(vtype, vtypeKind) } rvSetDirect(rvvn, rvv) rvv = rvvn } } goto DECODE_VALUE_NO_CHECK_NIL NEW_RVV: if vtypePtr { rvv = reflect.New(vtypeElem) // non-nil in stream, so allocate value } else if vTransient { rvv = d.perType.TransientAddrK(vtype, vtypeKind) } else { rvv = rvZeroAddrK(vtype, vtypeKind) } DECODE_VALUE_NO_CHECK_NIL: if doMapSet && mapKeyStringSharesBytesBuf { if ktypeIsString { rvSetString(rvk, d.detach2Str(kstr2bs, att)) } else { // ktypeIsIntf rvSetIntf(rvk, rv4istr(d.detach2Str(kstr2bs, att))) } } if vbuiltin { if vtypePtr { if rvIsNil(rvv) { rvSetDirect(rvv, reflect.New(vElem)) } d.decode(rv2i(rvv)) } else { d.decode(rv2i(rvAddr(rvv, ti.tielem.ptr))) } } else { d.decodeValueNoCheckNil(rvv, valFn) } if doMapSet { mapSet(rv, rvk, rvv, mparams) } } d.mapEnd() } func (d *decoder[T]) init(h Handle) { initHandle(h) callMake(&d.d) d.hh = h d.h = h.getBasicHandle() // d.zeroCopy = d.h.ZeroCopy // d.be = h.isBinary() d.err = errDecoderNotInitialized if d.h.InternString && d.is == nil { d.is.init() } // d.fp = fastpathDList[T]() d.fp = d.d.init(h, &d.decoderBase, d).(*fastpathDs[T]) // should set js, cbor, bytes, etc // d.cbreak = d.js || d.cbor if d.bytes { d.rtidFn = &d.h.rtidFnsDecBytes d.rtidFnNoExt = &d.h.rtidFnsDecNoExtBytes } else { d.bufio = d.h.ReaderBufferSize > 0 d.rtidFn = &d.h.rtidFnsDecIO d.rtidFnNoExt = &d.h.rtidFnsDecNoExtIO } d.reset() // NOTE: do not initialize d.n here. It is lazily initialized in d.naked() } func (d *decoder[T]) reset() { d.d.reset() d.err = nil d.c = 0 d.depth = 0 d.calls = 0 // reset all things which were cached from the Handle, but could change d.maxdepth = decDefMaxDepth if d.h.MaxDepth > 0 { d.maxdepth = d.h.MaxDepth } d.mtid = 0 d.stid = 0 d.mtr = false d.str = false if d.h.MapType != nil { d.mtid = rt2id(d.h.MapType) _, d.mtr = fastpathAvIndex(d.mtid) } if d.h.SliceType != nil { d.stid = rt2id(d.h.SliceType) _, d.str = fastpathAvIndex(d.stid) } } // Reset the Decoder with a new Reader to decode from, // clearing all state from last run(s). func (d *decoder[T]) Reset(r io.Reader) { if d.bytes { halt.onerror(errDecNoResetBytesWithReader) } d.reset() if r == nil { r = &eofReader } d.d.resetInIO(r) } // ResetBytes resets the Decoder with a new []byte to decode from, // clearing all state from last run(s). func (d *decoder[T]) ResetBytes(in []byte) { if !d.bytes { halt.onerror(errDecNoResetReaderWithBytes) } d.resetBytes(in) } func (d *decoder[T]) resetBytes(in []byte) { d.reset() if in == nil { in = zeroByteSlice } d.d.resetInBytes(in) } // ResetString resets the Decoder with a new string to decode from, // clearing all state from last run(s). // // It is a convenience function that calls ResetBytes with a // []byte view into the string. // // This can be an efficient zero-copy if using default mode i.e. without codec.safe tag. func (d *decoder[T]) ResetString(s string) { d.ResetBytes(bytesView(s)) } // Decode decodes the stream from reader and stores the result in the // value pointed to by v. v cannot be a nil pointer. v can also be // a reflect.Value of a pointer. // // Note that a pointer to a nil interface is not a nil pointer. // If you do not know what type of stream it is, pass in a pointer to a nil interface. // We will decode and store a value in that nil interface. // // Sample usages: // // // Decoding into a non-nil typed value // var f float32 // err = codec.NewDecoder(r, handle).Decode(&f) // // // Decoding into nil interface // var v interface{} // dec := codec.NewDecoder(r, handle) // err = dec.Decode(&v) // // When decoding into a nil interface{}, we will decode into an appropriate value based // on the contents of the stream: // - Numbers are decoded as float64, int64 or uint64. // - Other values are decoded appropriately depending on the type: // bool, string, []byte, time.Time, etc // - Extensions are decoded as RawExt (if no ext function registered for the tag) // // Configurations exist on the Handle to override defaults // (e.g. for MapType, SliceType and how to decode raw bytes). // // When decoding into a non-nil interface{} value, the mode of encoding is based on the // type of the value. When a value is seen: // - If an extension is registered for it, call that extension function // - If it implements BinaryUnmarshaler, call its UnmarshalBinary(data []byte) error // - Else decode it based on its reflect.Kind // // There are some special rules when decoding into containers (slice/array/map/struct). // Decode will typically use the stream contents to UPDATE the container i.e. the values // in these containers will not be zero'ed before decoding. // - A map can be decoded from a stream map, by updating matching keys. // - A slice can be decoded from a stream array, // by updating the first n elements, where n is length of the stream. // - A slice can be decoded from a stream map, by decoding as if // it contains a sequence of key-value pairs. // - A struct can be decoded from a stream map, by updating matching fields. // - A struct can be decoded from a stream array, // by updating fields as they occur in the struct (by index). // // This in-place update maintains consistency in the decoding philosophy (i.e. we ALWAYS update // in place by default). However, the consequence of this is that values in slices or maps // which are not zero'ed before hand, will have part of the prior values in place after decode // if the stream doesn't contain an update for those parts. // // This in-place update can be disabled by configuring the MapValueReset and SliceElementReset // decode options available on every handle. // // Furthermore, when decoding a stream map or array with length of 0 into a nil map or slice, // we reset the destination map or slice to a zero-length value. // // However, when decoding a stream nil, we reset the destination container // to its "zero" value (e.g. nil for slice/map, etc). // // Note: we allow nil values in the stream anywhere except for map keys. // A nil value in the encoded stream where a map key is expected is treated as an error. // // Note that an error from a Decode call will make the Decoder unusable moving forward. // This is because the state of the Decoder, it's input stream, etc are no longer stable. // Any subsequent calls to Decode will trigger the same error. func (d *decoder[T]) Decode(v interface{}) (err error) { // tried to use closure, as runtime optimizes defer with no params. // This seemed to be causing weird issues (like circular reference found, unexpected panic, etc). // Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139 defer panicValToErr(d, callRecoverSentinel, &d.err, &err, debugging) d.mustDecode(v) return } // MustDecode is like Decode, but panics if unable to Decode. // // Note: This provides insight to the code location that triggered the error. // // Note that an error from a Decode call will make the Decoder unusable moving forward. // This is because the state of the Decoder, it's input stream, etc are no longer stable. // Any subsequent calls to Decode will trigger the same error. func (d *decoder[T]) MustDecode(v interface{}) { defer panicValToErr(d, callRecoverSentinel, &d.err, nil, true) d.mustDecode(v) return } func (d *decoder[T]) mustDecode(v interface{}) { halt.onerror(d.err) if d.hh == nil { halt.onerror(errNoFormatHandle) } // Top-level: v is a pointer and not nil. d.calls++ d.decode(v) d.calls-- } // Release is a no-op. // // Deprecated: Pooled resources are not used with a Decoder. // This method is kept for compatibility reasons only. func (d *decoder[T]) Release() {} func (d *decoder[T]) swallow() { d.d.nextValueBytes() } func (d *decoder[T]) nextValueBytes() []byte { return d.d.nextValueBytes() } func (d *decoder[T]) decode(iv interface{}) { _ = d.d // early asserts d, d.d are not nil once // a switch with only concrete types can be optimized. // consequently, we deal with nil and interfaces outside the switch. rv, ok := isNil(iv, true) // handle nil pointers also if ok { halt.onerror(errCannotDecodeIntoNil) } switch v := iv.(type) { // case nil: // case Selfer: case *string: *v = d.detach2Str(d.d.DecodeStringAsBytes()) case *bool: *v = d.d.DecodeBool() case *int: *v = int(chkOvf.IntV(d.d.DecodeInt64(), intBitsize)) case *int8: *v = int8(chkOvf.IntV(d.d.DecodeInt64(), 8)) case *int16: *v = int16(chkOvf.IntV(d.d.DecodeInt64(), 16)) case *int32: *v = int32(chkOvf.IntV(d.d.DecodeInt64(), 32)) case *int64: *v = d.d.DecodeInt64() case *uint: *v = uint(chkOvf.UintV(d.d.DecodeUint64(), uintBitsize)) case *uint8: *v = uint8(chkOvf.UintV(d.d.DecodeUint64(), 8)) case *uint16: *v = uint16(chkOvf.UintV(d.d.DecodeUint64(), 16)) case *uint32: *v = uint32(chkOvf.UintV(d.d.DecodeUint64(), 32)) case *uint64: *v = d.d.DecodeUint64() case *uintptr: *v = uintptr(chkOvf.UintV(d.d.DecodeUint64(), uintBitsize)) case *float32: *v = d.d.DecodeFloat32() case *float64: *v = d.d.DecodeFloat64() case *complex64: *v = complex(d.d.DecodeFloat32(), 0) case *complex128: *v = complex(d.d.DecodeFloat64(), 0) case *[]byte: *v, _ = d.decodeBytesInto(*v, false) case []byte: // not addressable byte slice, so do not decode into it past the length d.decodeBytesInto(v[:len(v):len(v)], true) case *time.Time: *v = d.d.DecodeTime() case *Raw: *v = d.rawBytes() case *interface{}: d.decodeValue(rv4iptr(v), nil) case reflect.Value: if ok, _ = isDecodeable(v); !ok { d.haltAsNotDecodeable(v) } d.decodeValue(v, nil) default: // we can't check non-predefined types, as they might be a Selfer or extension. if skipFastpathTypeSwitchInDirectCall || !d.dh.fastpathDecodeTypeSwitch(iv, d) { if !rv.IsValid() { rv = reflect.ValueOf(iv) } if ok, _ = isDecodeable(rv); !ok { d.haltAsNotDecodeable(rv) } d.decodeValue(rv, nil) } } } // decodeValue MUST be called by the actual value we want to decode into, // not its addr or a reference to it. // // This way, we know if it is itself a pointer, and can handle nil in // the stream effectively. // // Note that decodeValue will handle nil in the stream early, so that the // subsequent calls i.e. kXXX methods, etc do not have to handle it themselves. func (d *decoder[T]) decodeValue(rv reflect.Value, fn *decFn[T]) { if d.d.TryNil() { decSetNonNilRV2Zero(rv) } else { d.decodeValueNoCheckNil(rv, fn) } } func (d *decoder[T]) decodeValueNoCheckNil(rv reflect.Value, fn *decFn[T]) { // If stream is not containing a nil value, then we can deref to the base // non-pointer value, and decode into that. var rvp reflect.Value var rvpValid bool PTR: if rv.Kind() == reflect.Ptr { rvpValid = true if rvIsNil(rv) { rvSetDirect(rv, reflect.New(rv.Type().Elem())) } rvp = rv rv = rv.Elem() goto PTR } if fn == nil { fn = d.fn(rv.Type()) } if fn.i.addrD { if rvpValid { rv = rvp } else if rv.CanAddr() { rv = rvAddr(rv, fn.i.ti.ptr) } else if fn.i.addrDf { halt.errorStr("cannot decode into a non-pointer value") } } fn.fd(d, &fn.i, rv) } func (d *decoder[T]) decodeAs(v interface{}, t reflect.Type, ext bool) { if ext { d.decodeValue(baseRV(v), d.fn(t)) } else { d.decodeValue(baseRV(v), d.fnNoExt(t)) } } func (d *decoder[T]) structFieldNotFound(index int, rvkencname string) { // Note: rvkencname is used only if there is an error, to pass into halt.errorf. // Consequently, it is ok to pass in a stringView // Since rvkencname may be a stringView, do NOT pass it to another function. if d.h.ErrorIfNoField { if index >= 0 { halt.errorInt("no matching struct field found when decoding stream array at index ", int64(index)) } else if rvkencname != "" { halt.errorStr2("no matching struct field found when decoding stream map with key ", rvkencname) } } d.swallow() } // decodeBytesInto is a convenience delegate function to decDriver.DecodeBytes. // It ensures that `in` is not a nil byte, before calling decDriver.DecodeBytes, // as decDriver.DecodeBytes treats a nil as a hint to use its internal scratch buffer. func (d *decoder[T]) decodeBytesInto(out []byte, mustFit bool) (v []byte, state dBytesIntoState) { v, att := d.d.DecodeBytes() if cap(v) == 0 || (att >= dBytesAttachViewZerocopy && !mustFit) { // no need to detach (since mustFit=false) // including v has no capacity (covers v == nil and []byte{}) return } if len(v) == 0 { v = zeroByteSlice // cannot be re-sliced/appended to return } if len(out) == len(v) { state = dBytesIntoParamOut } else if cap(out) >= len(v) { out = out[:len(v)] state = dBytesIntoParamOutSlice } else if mustFit { halt.errorf("bytes capacity insufficient for decoded bytes: got/expected: %d/%d", len(v), len(out)) } else { out = make([]byte, len(v)) state = dBytesIntoNew } copy(out, v) v = out return } func (d *decoder[T]) rawBytes() (v []byte) { // ensure that this is not a view into the bytes // i.e. if necessary, make new copy always. v = d.d.nextValueBytes() if d.bytes && !d.h.ZeroCopy { vv := make([]byte, len(v)) copy(vv, v) // using copy here triggers make+copy optimization eliding memclr v = vv } return } func (d *decoder[T]) wrapErr(v error, err *error) { *err = wrapCodecErr(v, d.hh.Name(), d.d.NumBytesRead(), false) } // NumBytesRead returns the number of bytes read func (d *decoder[T]) NumBytesRead() int { return d.d.NumBytesRead() } // ---- container tracking // Note: We update the .c after calling the callback. // This way, the callback can know what the last status was. // MARKER: do not call mapEnd if mapStart returns containerLenNil. // MARKER: optimize decoding since all formats do not truly support all decDriver'ish operations. // - Read(Map|Array)Start is only supported by all formats. // - CheckBreak is only supported by json and cbor. // - Read(Map|Array)End is only supported by json. // - Read(Map|Array)Elem(Kay|Value) is only supported by json. // Honor these in the code, to reduce the number of interface calls (even if empty). func (d *decoder[T]) containerNext(j, containerLen int, hasLen bool) bool { // return (hasLen && (j < containerLen)) || (!hasLen && !d.d.CheckBreak()) if hasLen { return j < containerLen } return !d.d.CheckBreak() } func (d *decoder[T]) mapElemKey(firstTime bool) { d.d.ReadMapElemKey(firstTime) d.c = containerMapKey } func (d *decoder[T]) mapElemValue() { d.d.ReadMapElemValue() d.c = containerMapValue } func (d *decoder[T]) mapEnd() { d.d.ReadMapEnd() d.depthDecr() d.c = 0 } func (d *decoder[T]) arrayElem(firstTime bool) { d.d.ReadArrayElem(firstTime) d.c = containerArrayElem } func (d *decoder[T]) arrayEnd() { d.d.ReadArrayEnd() d.depthDecr() d.c = 0 } func (d *decoder[T]) interfaceExtConvertAndDecode(v interface{}, ext InterfaceExt) { // The ext may support different types for performance e.g. int if no fractions, else float64 // Consequently, best mode is: // - decode next value into an interface{} // - pass it to the UpdateExt var vv interface{} d.decode(&vv) ext.UpdateExt(v, vv) // rv := d.interfaceExtConvertAndDecodeGetRV(v, ext) // d.decodeValue(rv, nil) // ext.UpdateExt(v, rv2i(rv)) } func (d *decoder[T]) fn(t reflect.Type) *decFn[T] { return d.dh.decFnViaBH(t, d.rtidFn, d.h, d.fp, false) } func (d *decoder[T]) fnNoExt(t reflect.Type) *decFn[T] { return d.dh.decFnViaBH(t, d.rtidFnNoExt, d.h, d.fp, true) } // ---- func (helperDecDriver[T]) newDecoderBytes(in []byte, h Handle) *decoder[T] { var c1 decoder[T] c1.bytes = true c1.init(h) c1.ResetBytes(in) // MARKER check for error return &c1 } func (helperDecDriver[T]) newDecoderIO(in io.Reader, h Handle) *decoder[T] { var c1 decoder[T] c1.init(h) c1.Reset(in) return &c1 } // ---- func (helperDecDriver[T]) decFnloadFastpathUnderlying(ti *typeInfo, fp *fastpathDs[T]) (f *fastpathD[T], u reflect.Type) { rtid := rt2id(ti.fastpathUnderlying) idx, ok := fastpathAvIndex(rtid) if !ok { return } f = &fp[idx] if uint8(reflect.Array) == ti.kind { u = reflect.ArrayOf(ti.rt.Len(), ti.elem) } else { u = f.rt } return } func (helperDecDriver[T]) decFindRtidFn(s []decRtidFn[T], rtid uintptr) (i uint, fn *decFn[T]) { // binary search. Adapted from sort/search.go. Use goto (not for loop) to allow inlining. var h uint // var h, i uint var j = uint(len(s)) LOOP: if i < j { h = (i + j) >> 1 // avoid overflow when computing h // h = i + (j-i)/2 if s[h].rtid < rtid { i = h + 1 } else { j = h } goto LOOP } if i < uint(len(s)) && s[i].rtid == rtid { fn = s[i].fn } return } func (helperDecDriver[T]) decFromRtidFnSlice(fns *atomicRtidFnSlice) (s []decRtidFn[T]) { if v := fns.load(); v != nil { s = *(lowLevelToPtr[[]decRtidFn[T]](v)) } return } func (dh helperDecDriver[T]) decFnViaBH(rt reflect.Type, fns *atomicRtidFnSlice, x *BasicHandle, fp *fastpathDs[T], checkExt bool) (fn *decFn[T]) { return dh.decFnVia(rt, fns, x.typeInfos(), &x.mu, x.extHandle, fp, checkExt, x.CheckCircularRef, x.timeBuiltin, x.binaryHandle, x.jsonHandle) } func (dh helperDecDriver[T]) decFnVia(rt reflect.Type, fns *atomicRtidFnSlice, tinfos *TypeInfos, mu *sync.Mutex, exth extHandle, fp *fastpathDs[T], checkExt, checkCircularRef, timeBuiltin, binaryEncoding, json bool) (fn *decFn[T]) { rtid := rt2id(rt) var sp []decRtidFn[T] = dh.decFromRtidFnSlice(fns) if sp != nil { _, fn = dh.decFindRtidFn(sp, rtid) } if fn == nil { fn = dh.decFnViaLoader(rt, rtid, fns, tinfos, mu, exth, fp, checkExt, checkCircularRef, timeBuiltin, binaryEncoding, json) } return } func (dh helperDecDriver[T]) decFnViaLoader(rt reflect.Type, rtid uintptr, fns *atomicRtidFnSlice, tinfos *TypeInfos, mu *sync.Mutex, exth extHandle, fp *fastpathDs[T], checkExt, checkCircularRef, timeBuiltin, binaryEncoding, json bool) (fn *decFn[T]) { fn = dh.decFnLoad(rt, rtid, tinfos, exth, fp, checkExt, checkCircularRef, timeBuiltin, binaryEncoding, json) var sp []decRtidFn[T] mu.Lock() sp = dh.decFromRtidFnSlice(fns) // since this is an atomic load/store, we MUST use a different array each time, // else we have a data race when a store is happening simultaneously with a decFindRtidFn call. if sp == nil { sp = []decRtidFn[T]{{rtid, fn}} fns.store(ptrToLowLevel(&sp)) } else { idx, fn2 := dh.decFindRtidFn(sp, rtid) if fn2 == nil { sp2 := make([]decRtidFn[T], len(sp)+1) copy(sp2[idx+1:], sp[idx:]) copy(sp2, sp[:idx]) sp2[idx] = decRtidFn[T]{rtid, fn} fns.store(ptrToLowLevel(&sp2)) } } mu.Unlock() return } func (dh helperDecDriver[T]) decFnLoad(rt reflect.Type, rtid uintptr, tinfos *TypeInfos, exth extHandle, fp *fastpathDs[T], checkExt, checkCircularRef, timeBuiltin, binaryEncoding, json bool) (fn *decFn[T]) { fn = new(decFn[T]) fi := &(fn.i) ti := tinfos.get(rtid, rt) fi.ti = ti rk := reflect.Kind(ti.kind) // anything can be an extension except the built-in ones: time, raw and rawext. // ensure we check for these types, then if extension, before checking if // it implementes one of the pre-declared interfaces. fi.addrDf = true if rtid == timeTypId && timeBuiltin { fn.fd = (*decoder[T]).kTime } else if rtid == rawTypId { fn.fd = (*decoder[T]).raw } else if rtid == rawExtTypId { fn.fd = (*decoder[T]).rawExt fi.addrD = true } else if xfFn := exth.getExt(rtid, checkExt); xfFn != nil { fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext fn.fd = (*decoder[T]).ext fi.addrD = true } else if ti.flagSelfer || ti.flagSelferPtr { fn.fd = (*decoder[T]).selferUnmarshal fi.addrD = ti.flagSelferPtr } else if supportMarshalInterfaces && binaryEncoding && (ti.flagBinaryMarshaler || ti.flagBinaryMarshalerPtr) && (ti.flagBinaryUnmarshaler || ti.flagBinaryUnmarshalerPtr) { fn.fd = (*decoder[T]).binaryUnmarshal fi.addrD = ti.flagBinaryUnmarshalerPtr } else if supportMarshalInterfaces && !binaryEncoding && json && (ti.flagJsonMarshaler || ti.flagJsonMarshalerPtr) && (ti.flagJsonUnmarshaler || ti.flagJsonUnmarshalerPtr) { //If JSON, we should check JSONMarshal before textMarshal fn.fd = (*decoder[T]).jsonUnmarshal fi.addrD = ti.flagJsonUnmarshalerPtr } else if supportMarshalInterfaces && !binaryEncoding && (ti.flagTextMarshaler || ti.flagTextMarshalerPtr) && (ti.flagTextUnmarshaler || ti.flagTextUnmarshalerPtr) { fn.fd = (*decoder[T]).textUnmarshal fi.addrD = ti.flagTextUnmarshalerPtr } else { if fastpathEnabled && (rk == reflect.Map || rk == reflect.Slice || rk == reflect.Array) { var rtid2 uintptr if !ti.flagHasPkgPath { // un-named type (slice or mpa or array) rtid2 = rtid if rk == reflect.Array { rtid2 = rt2id(ti.key) // ti.key for arrays = reflect.SliceOf(ti.elem) } if idx, ok := fastpathAvIndex(rtid2); ok { fn.fd = fp[idx].decfn fi.addrD = true fi.addrDf = false if rk == reflect.Array { fi.addrD = false // decode directly into array value (slice made from it) } } } else { // named type (with underlying type of map or slice or array) // try to use mapping for underlying type xfe, xrt := dh.decFnloadFastpathUnderlying(ti, fp) if xfe != nil { xfnf2 := xfe.decfn if rk == reflect.Array { fi.addrD = false // decode directly into array value (slice made from it) fn.fd = func(d *decoder[T], xf *decFnInfo, xrv reflect.Value) { xfnf2(d, xf, rvConvert(xrv, xrt)) } } else { fi.addrD = true fi.addrDf = false // meaning it can be an address(ptr) or a value xptr2rt := reflect.PointerTo(xrt) fn.fd = func(d *decoder[T], xf *decFnInfo, xrv reflect.Value) { if xrv.Kind() == reflect.Ptr { xfnf2(d, xf, rvConvert(xrv, xptr2rt)) } else { xfnf2(d, xf, rvConvert(xrv, xrt)) } } } } } } if fn.fd == nil { switch rk { case reflect.Bool: fn.fd = (*decoder[T]).kBool case reflect.String: fn.fd = (*decoder[T]).kString case reflect.Int: fn.fd = (*decoder[T]).kInt case reflect.Int8: fn.fd = (*decoder[T]).kInt8 case reflect.Int16: fn.fd = (*decoder[T]).kInt16 case reflect.Int32: fn.fd = (*decoder[T]).kInt32 case reflect.Int64: fn.fd = (*decoder[T]).kInt64 case reflect.Uint: fn.fd = (*decoder[T]).kUint case reflect.Uint8: fn.fd = (*decoder[T]).kUint8 case reflect.Uint16: fn.fd = (*decoder[T]).kUint16 case reflect.Uint32: fn.fd = (*decoder[T]).kUint32 case reflect.Uint64: fn.fd = (*decoder[T]).kUint64 case reflect.Uintptr: fn.fd = (*decoder[T]).kUintptr case reflect.Float32: fn.fd = (*decoder[T]).kFloat32 case reflect.Float64: fn.fd = (*decoder[T]).kFloat64 case reflect.Complex64: fn.fd = (*decoder[T]).kComplex64 case reflect.Complex128: fn.fd = (*decoder[T]).kComplex128 case reflect.Chan: fn.fd = (*decoder[T]).kChan case reflect.Slice: fn.fd = (*decoder[T]).kSlice case reflect.Array: fi.addrD = false // decode directly into array value (slice made from it) fn.fd = (*decoder[T]).kArray case reflect.Struct: if ti.simple { fn.fd = (*decoder[T]).kStructSimple } else { fn.fd = (*decoder[T]).kStruct } case reflect.Map: fn.fd = (*decoder[T]).kMap case reflect.Interface: // encode: reflect.Interface are handled already by preEncodeValue fn.fd = (*decoder[T]).kInterface default: // reflect.Ptr and reflect.Interface are handled already by preEncodeValue fn.fd = (*decoder[T]).kErr } } } return }