1420 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			1420 lines
		
	
	
		
			47 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright (c) 2015 Klaus Post, released under MIT License. See LICENSE file.
 | ||
| 
 | ||
| // Package cpuid provides information about the CPU running the current program.
 | ||
| //
 | ||
| // CPU features are detected on startup, and kept for fast access through the life of the application.
 | ||
| // Currently x86 / x64 (AMD64) as well as arm64 is supported.
 | ||
| //
 | ||
| // You can access the CPU information by accessing the shared CPU variable of the cpuid library.
 | ||
| //
 | ||
| // Package home: https://github.com/klauspost/cpuid
 | ||
| package cpuid
 | ||
| 
 | ||
| import (
 | ||
| 	"flag"
 | ||
| 	"fmt"
 | ||
| 	"math"
 | ||
| 	"math/bits"
 | ||
| 	"os"
 | ||
| 	"runtime"
 | ||
| 	"strings"
 | ||
| )
 | ||
| 
 | ||
| // AMD refererence: https://www.amd.com/system/files/TechDocs/25481.pdf
 | ||
| // and Processor Programming Reference (PPR)
 | ||
| 
 | ||
| // Vendor is a representation of a CPU vendor.
 | ||
| type Vendor int
 | ||
| 
 | ||
| const (
 | ||
| 	VendorUnknown Vendor = iota
 | ||
| 	Intel
 | ||
| 	AMD
 | ||
| 	VIA
 | ||
| 	Transmeta
 | ||
| 	NSC
 | ||
| 	KVM  // Kernel-based Virtual Machine
 | ||
| 	MSVM // Microsoft Hyper-V or Windows Virtual PC
 | ||
| 	VMware
 | ||
| 	XenHVM
 | ||
| 	Bhyve
 | ||
| 	Hygon
 | ||
| 	SiS
 | ||
| 	RDC
 | ||
| 
 | ||
| 	Ampere
 | ||
| 	ARM
 | ||
| 	Broadcom
 | ||
| 	Cavium
 | ||
| 	DEC
 | ||
| 	Fujitsu
 | ||
| 	Infineon
 | ||
| 	Motorola
 | ||
| 	NVIDIA
 | ||
| 	AMCC
 | ||
| 	Qualcomm
 | ||
| 	Marvell
 | ||
| 
 | ||
| 	lastVendor
 | ||
| )
 | ||
| 
 | ||
| //go:generate stringer -type=FeatureID,Vendor
 | ||
| 
 | ||
| // FeatureID is the ID of a specific cpu feature.
 | ||
| type FeatureID int
 | ||
| 
 | ||
| const (
 | ||
| 	// Keep index -1 as unknown
 | ||
| 	UNKNOWN = -1
 | ||
| 
 | ||
| 	// Add features
 | ||
| 	ADX                FeatureID = iota // Intel ADX (Multi-Precision Add-Carry Instruction Extensions)
 | ||
| 	AESNI                               // Advanced Encryption Standard New Instructions
 | ||
| 	AMD3DNOW                            // AMD 3DNOW
 | ||
| 	AMD3DNOWEXT                         // AMD 3DNowExt
 | ||
| 	AMXBF16                             // Tile computational operations on BFLOAT16 numbers
 | ||
| 	AMXFP16                             // Tile computational operations on FP16 numbers
 | ||
| 	AMXINT8                             // Tile computational operations on 8-bit integers
 | ||
| 	AMXTILE                             // Tile architecture
 | ||
| 	AVX                                 // AVX functions
 | ||
| 	AVX2                                // AVX2 functions
 | ||
| 	AVX512BF16                          // AVX-512 BFLOAT16 Instructions
 | ||
| 	AVX512BITALG                        // AVX-512 Bit Algorithms
 | ||
| 	AVX512BW                            // AVX-512 Byte and Word Instructions
 | ||
| 	AVX512CD                            // AVX-512 Conflict Detection Instructions
 | ||
| 	AVX512DQ                            // AVX-512 Doubleword and Quadword Instructions
 | ||
| 	AVX512ER                            // AVX-512 Exponential and Reciprocal Instructions
 | ||
| 	AVX512F                             // AVX-512 Foundation
 | ||
| 	AVX512FP16                          // AVX-512 FP16 Instructions
 | ||
| 	AVX512IFMA                          // AVX-512 Integer Fused Multiply-Add Instructions
 | ||
| 	AVX512PF                            // AVX-512 Prefetch Instructions
 | ||
| 	AVX512VBMI                          // AVX-512 Vector Bit Manipulation Instructions
 | ||
| 	AVX512VBMI2                         // AVX-512 Vector Bit Manipulation Instructions, Version 2
 | ||
| 	AVX512VL                            // AVX-512 Vector Length Extensions
 | ||
| 	AVX512VNNI                          // AVX-512 Vector Neural Network Instructions
 | ||
| 	AVX512VP2INTERSECT                  // AVX-512 Intersect for D/Q
 | ||
| 	AVX512VPOPCNTDQ                     // AVX-512 Vector Population Count Doubleword and Quadword
 | ||
| 	AVXIFMA                             // AVX-IFMA instructions
 | ||
| 	AVXNECONVERT                        // AVX-NE-CONVERT instructions
 | ||
| 	AVXSLOW                             // Indicates the CPU performs 2 128 bit operations instead of one
 | ||
| 	AVXVNNI                             // AVX (VEX encoded) VNNI neural network instructions
 | ||
| 	AVXVNNIINT8                         // AVX-VNNI-INT8 instructions
 | ||
| 	BHI_CTRL                            // Branch History Injection and Intra-mode Branch Target Injection / CVE-2022-0001, CVE-2022-0002 / INTEL-SA-00598
 | ||
| 	BMI1                                // Bit Manipulation Instruction Set 1
 | ||
| 	BMI2                                // Bit Manipulation Instruction Set 2
 | ||
| 	CETIBT                              // Intel CET Indirect Branch Tracking
 | ||
| 	CETSS                               // Intel CET Shadow Stack
 | ||
| 	CLDEMOTE                            // Cache Line Demote
 | ||
| 	CLMUL                               // Carry-less Multiplication
 | ||
| 	CLZERO                              // CLZERO instruction supported
 | ||
| 	CMOV                                // i686 CMOV
 | ||
| 	CMPCCXADD                           // CMPCCXADD instructions
 | ||
| 	CMPSB_SCADBS_SHORT                  // Fast short CMPSB and SCASB
 | ||
| 	CMPXCHG8                            // CMPXCHG8 instruction
 | ||
| 	CPBOOST                             // Core Performance Boost
 | ||
| 	CPPC                                // AMD: Collaborative Processor Performance Control
 | ||
| 	CX16                                // CMPXCHG16B Instruction
 | ||
| 	EFER_LMSLE_UNS                      // AMD: =Core::X86::Msr::EFER[LMSLE] is not supported, and MBZ
 | ||
| 	ENQCMD                              // Enqueue Command
 | ||
| 	ERMS                                // Enhanced REP MOVSB/STOSB
 | ||
| 	F16C                                // Half-precision floating-point conversion
 | ||
| 	FLUSH_L1D                           // Flush L1D cache
 | ||
| 	FMA3                                // Intel FMA 3. Does not imply AVX.
 | ||
| 	FMA4                                // Bulldozer FMA4 functions
 | ||
| 	FP128                               // AMD: When set, the internal FP/SIMD execution datapath is no more than 128-bits wide
 | ||
| 	FP256                               // AMD: When set, the internal FP/SIMD execution datapath is no more than 256-bits wide
 | ||
| 	FSRM                                // Fast Short Rep Mov
 | ||
| 	FXSR                                // FXSAVE, FXRESTOR instructions, CR4 bit 9
 | ||
| 	FXSROPT                             // FXSAVE/FXRSTOR optimizations
 | ||
| 	GFNI                                // Galois Field New Instructions. May require other features (AVX, AVX512VL,AVX512F) based on usage.
 | ||
| 	HLE                                 // Hardware Lock Elision
 | ||
| 	HRESET                              // If set CPU supports history reset and the IA32_HRESET_ENABLE MSR
 | ||
| 	HTT                                 // Hyperthreading (enabled)
 | ||
| 	HWA                                 // Hardware assert supported. Indicates support for MSRC001_10
 | ||
| 	HYBRID_CPU                          // This part has CPUs of more than one type.
 | ||
| 	HYPERVISOR                          // This bit has been reserved by Intel & AMD for use by hypervisors
 | ||
| 	IA32_ARCH_CAP                       // IA32_ARCH_CAPABILITIES MSR (Intel)
 | ||
| 	IA32_CORE_CAP                       // IA32_CORE_CAPABILITIES MSR
 | ||
| 	IBPB                                // Indirect Branch Restricted Speculation (IBRS) and Indirect Branch Predictor Barrier (IBPB)
 | ||
| 	IBRS                                // AMD: Indirect Branch Restricted Speculation
 | ||
| 	IBRS_PREFERRED                      // AMD: IBRS is preferred over software solution
 | ||
| 	IBRS_PROVIDES_SMP                   // AMD: IBRS provides Same Mode Protection
 | ||
| 	IBS                                 // Instruction Based Sampling (AMD)
 | ||
| 	IBSBRNTRGT                          // Instruction Based Sampling Feature (AMD)
 | ||
| 	IBSFETCHSAM                         // Instruction Based Sampling Feature (AMD)
 | ||
| 	IBSFFV                              // Instruction Based Sampling Feature (AMD)
 | ||
| 	IBSOPCNT                            // Instruction Based Sampling Feature (AMD)
 | ||
| 	IBSOPCNTEXT                         // Instruction Based Sampling Feature (AMD)
 | ||
| 	IBSOPSAM                            // Instruction Based Sampling Feature (AMD)
 | ||
| 	IBSRDWROPCNT                        // Instruction Based Sampling Feature (AMD)
 | ||
| 	IBSRIPINVALIDCHK                    // Instruction Based Sampling Feature (AMD)
 | ||
| 	IBS_FETCH_CTLX                      // AMD: IBS fetch control extended MSR supported
 | ||
| 	IBS_OPDATA4                         // AMD: IBS op data 4 MSR supported
 | ||
| 	IBS_OPFUSE                          // AMD: Indicates support for IbsOpFuse
 | ||
| 	IBS_PREVENTHOST                     // Disallowing IBS use by the host supported
 | ||
| 	IBS_ZEN4                            // AMD: Fetch and Op IBS support IBS extensions added with Zen4
 | ||
| 	IDPRED_CTRL                         // IPRED_DIS
 | ||
| 	INT_WBINVD                          // WBINVD/WBNOINVD are interruptible.
 | ||
| 	INVLPGB                             // NVLPGB and TLBSYNC instruction supported
 | ||
| 	LAHF                                // LAHF/SAHF in long mode
 | ||
| 	LAM                                 // If set, CPU supports Linear Address Masking
 | ||
| 	LBRVIRT                             // LBR virtualization
 | ||
| 	LZCNT                               // LZCNT instruction
 | ||
| 	MCAOVERFLOW                         // MCA overflow recovery support.
 | ||
| 	MCDT_NO                             // Processor do not exhibit MXCSR Configuration Dependent Timing behavior and do not need to mitigate it.
 | ||
| 	MCOMMIT                             // MCOMMIT instruction supported
 | ||
| 	MD_CLEAR                            // VERW clears CPU buffers
 | ||
| 	MMX                                 // standard MMX
 | ||
| 	MMXEXT                              // SSE integer functions or AMD MMX ext
 | ||
| 	MOVBE                               // MOVBE instruction (big-endian)
 | ||
| 	MOVDIR64B                           // Move 64 Bytes as Direct Store
 | ||
| 	MOVDIRI                             // Move Doubleword as Direct Store
 | ||
| 	MOVSB_ZL                            // Fast Zero-Length MOVSB
 | ||
| 	MOVU                                // AMD: MOVU SSE instructions are more efficient and should be preferred to SSE	MOVL/MOVH. MOVUPS is more efficient than MOVLPS/MOVHPS. MOVUPD is more efficient than MOVLPD/MOVHPD
 | ||
| 	MPX                                 // Intel MPX (Memory Protection Extensions)
 | ||
| 	MSRIRC                              // Instruction Retired Counter MSR available
 | ||
| 	MSRLIST                             // Read/Write List of Model Specific Registers
 | ||
| 	MSR_PAGEFLUSH                       // Page Flush MSR available
 | ||
| 	NRIPS                               // Indicates support for NRIP save on VMEXIT
 | ||
| 	NX                                  // NX (No-Execute) bit
 | ||
| 	OSXSAVE                             // XSAVE enabled by OS
 | ||
| 	PCONFIG                             // PCONFIG for Intel Multi-Key Total Memory Encryption
 | ||
| 	POPCNT                              // POPCNT instruction
 | ||
| 	PPIN                                // AMD: Protected Processor Inventory Number support. Indicates that Protected Processor Inventory Number (PPIN) capability can be enabled
 | ||
| 	PREFETCHI                           // PREFETCHIT0/1 instructions
 | ||
| 	PSFD                                // Predictive Store Forward Disable
 | ||
| 	RDPRU                               // RDPRU instruction supported
 | ||
| 	RDRAND                              // RDRAND instruction is available
 | ||
| 	RDSEED                              // RDSEED instruction is available
 | ||
| 	RDTSCP                              // RDTSCP Instruction
 | ||
| 	RRSBA_CTRL                          // Restricted RSB Alternate
 | ||
| 	RTM                                 // Restricted Transactional Memory
 | ||
| 	RTM_ALWAYS_ABORT                    // Indicates that the loaded microcode is forcing RTM abort.
 | ||
| 	SERIALIZE                           // Serialize Instruction Execution
 | ||
| 	SEV                                 // AMD Secure Encrypted Virtualization supported
 | ||
| 	SEV_64BIT                           // AMD SEV guest execution only allowed from a 64-bit host
 | ||
| 	SEV_ALTERNATIVE                     // AMD SEV Alternate Injection supported
 | ||
| 	SEV_DEBUGSWAP                       // Full debug state swap supported for SEV-ES guests
 | ||
| 	SEV_ES                              // AMD SEV Encrypted State supported
 | ||
| 	SEV_RESTRICTED                      // AMD SEV Restricted Injection supported
 | ||
| 	SEV_SNP                             // AMD SEV Secure Nested Paging supported
 | ||
| 	SGX                                 // Software Guard Extensions
 | ||
| 	SGXLC                               // Software Guard Extensions Launch Control
 | ||
| 	SHA                                 // Intel SHA Extensions
 | ||
| 	SME                                 // AMD Secure Memory Encryption supported
 | ||
| 	SME_COHERENT                        // AMD Hardware cache coherency across encryption domains enforced
 | ||
| 	SPEC_CTRL_SSBD                      // Speculative Store Bypass Disable
 | ||
| 	SRBDS_CTRL                          // SRBDS mitigation MSR available
 | ||
| 	SSE                                 // SSE functions
 | ||
| 	SSE2                                // P4 SSE functions
 | ||
| 	SSE3                                // Prescott SSE3 functions
 | ||
| 	SSE4                                // Penryn SSE4.1 functions
 | ||
| 	SSE42                               // Nehalem SSE4.2 functions
 | ||
| 	SSE4A                               // AMD Barcelona microarchitecture SSE4a instructions
 | ||
| 	SSSE3                               // Conroe SSSE3 functions
 | ||
| 	STIBP                               // Single Thread Indirect Branch Predictors
 | ||
| 	STIBP_ALWAYSON                      // AMD: Single Thread Indirect Branch Prediction Mode has Enhanced Performance and may be left Always On
 | ||
| 	STOSB_SHORT                         // Fast short STOSB
 | ||
| 	SUCCOR                              // Software uncorrectable error containment and recovery capability.
 | ||
| 	SVM                                 // AMD Secure Virtual Machine
 | ||
| 	SVMDA                               // Indicates support for the SVM decode assists.
 | ||
| 	SVMFBASID                           // SVM, Indicates that TLB flush events, including CR3 writes and CR4.PGE toggles, flush only the current ASID's TLB entries. Also indicates support for the extended VMCBTLB_Control
 | ||
| 	SVML                                // AMD SVM lock. Indicates support for SVM-Lock.
 | ||
| 	SVMNP                               // AMD SVM nested paging
 | ||
| 	SVMPF                               // SVM pause intercept filter. Indicates support for the pause intercept filter
 | ||
| 	SVMPFT                              // SVM PAUSE filter threshold. Indicates support for the PAUSE filter cycle count threshold
 | ||
| 	SYSCALL                             // System-Call Extension (SCE): SYSCALL and SYSRET instructions.
 | ||
| 	SYSEE                               // SYSENTER and SYSEXIT instructions
 | ||
| 	TBM                                 // AMD Trailing Bit Manipulation
 | ||
| 	TLB_FLUSH_NESTED                    // AMD: Flushing includes all the nested translations for guest translations
 | ||
| 	TME                                 // Intel Total Memory Encryption. The following MSRs are supported: IA32_TME_CAPABILITY, IA32_TME_ACTIVATE, IA32_TME_EXCLUDE_MASK, and IA32_TME_EXCLUDE_BASE.
 | ||
| 	TOPEXT                              // TopologyExtensions: topology extensions support. Indicates support for CPUID Fn8000_001D_EAX_x[N:0]-CPUID Fn8000_001E_EDX.
 | ||
| 	TSCRATEMSR                          // MSR based TSC rate control. Indicates support for MSR TSC ratio MSRC000_0104
 | ||
| 	TSXLDTRK                            // Intel TSX Suspend Load Address Tracking
 | ||
| 	VAES                                // Vector AES. AVX(512) versions requires additional checks.
 | ||
| 	VMCBCLEAN                           // VMCB clean bits. Indicates support for VMCB clean bits.
 | ||
| 	VMPL                                // AMD VM Permission Levels supported
 | ||
| 	VMSA_REGPROT                        // AMD VMSA Register Protection supported
 | ||
| 	VMX                                 // Virtual Machine Extensions
 | ||
| 	VPCLMULQDQ                          // Carry-Less Multiplication Quadword. Requires AVX for 3 register versions.
 | ||
| 	VTE                                 // AMD Virtual Transparent Encryption supported
 | ||
| 	WAITPKG                             // TPAUSE, UMONITOR, UMWAIT
 | ||
| 	WBNOINVD                            // Write Back and Do Not Invalidate Cache
 | ||
| 	WRMSRNS                             // Non-Serializing Write to Model Specific Register
 | ||
| 	X87                                 // FPU
 | ||
| 	XGETBV1                             // Supports XGETBV with ECX = 1
 | ||
| 	XOP                                 // Bulldozer XOP functions
 | ||
| 	XSAVE                               // XSAVE, XRESTOR, XSETBV, XGETBV
 | ||
| 	XSAVEC                              // Supports XSAVEC and the compacted form of XRSTOR.
 | ||
| 	XSAVEOPT                            // XSAVEOPT available
 | ||
| 	XSAVES                              // Supports XSAVES/XRSTORS and IA32_XSS
 | ||
| 
 | ||
| 	// ARM features:
 | ||
| 	AESARM   // AES instructions
 | ||
| 	ARMCPUID // Some CPU ID registers readable at user-level
 | ||
| 	ASIMD    // Advanced SIMD
 | ||
| 	ASIMDDP  // SIMD Dot Product
 | ||
| 	ASIMDHP  // Advanced SIMD half-precision floating point
 | ||
| 	ASIMDRDM // Rounding Double Multiply Accumulate/Subtract (SQRDMLAH/SQRDMLSH)
 | ||
| 	ATOMICS  // Large System Extensions (LSE)
 | ||
| 	CRC32    // CRC32/CRC32C instructions
 | ||
| 	DCPOP    // Data cache clean to Point of Persistence (DC CVAP)
 | ||
| 	EVTSTRM  // Generic timer
 | ||
| 	FCMA     // Floatin point complex number addition and multiplication
 | ||
| 	FP       // Single-precision and double-precision floating point
 | ||
| 	FPHP     // Half-precision floating point
 | ||
| 	GPA      // Generic Pointer Authentication
 | ||
| 	JSCVT    // Javascript-style double->int convert (FJCVTZS)
 | ||
| 	LRCPC    // Weaker release consistency (LDAPR, etc)
 | ||
| 	PMULL    // Polynomial Multiply instructions (PMULL/PMULL2)
 | ||
| 	SHA1     // SHA-1 instructions (SHA1C, etc)
 | ||
| 	SHA2     // SHA-2 instructions (SHA256H, etc)
 | ||
| 	SHA3     // SHA-3 instructions (EOR3, RAXI, XAR, BCAX)
 | ||
| 	SHA512   // SHA512 instructions
 | ||
| 	SM3      // SM3 instructions
 | ||
| 	SM4      // SM4 instructions
 | ||
| 	SVE      // Scalable Vector Extension
 | ||
| 	// Keep it last. It automatically defines the size of []flagSet
 | ||
| 	lastID
 | ||
| 
 | ||
| 	firstID FeatureID = UNKNOWN + 1
 | ||
| )
 | ||
| 
 | ||
| // CPUInfo contains information about the detected system CPU.
 | ||
| type CPUInfo struct {
 | ||
| 	BrandName      string  // Brand name reported by the CPU
 | ||
| 	VendorID       Vendor  // Comparable CPU vendor ID
 | ||
| 	VendorString   string  // Raw vendor string.
 | ||
| 	featureSet     flagSet // Features of the CPU
 | ||
| 	PhysicalCores  int     // Number of physical processor cores in your CPU. Will be 0 if undetectable.
 | ||
| 	ThreadsPerCore int     // Number of threads per physical core. Will be 1 if undetectable.
 | ||
| 	LogicalCores   int     // Number of physical cores times threads that can run on each core through the use of hyperthreading. Will be 0 if undetectable.
 | ||
| 	Family         int     // CPU family number
 | ||
| 	Model          int     // CPU model number
 | ||
| 	Stepping       int     // CPU stepping info
 | ||
| 	CacheLine      int     // Cache line size in bytes. Will be 0 if undetectable.
 | ||
| 	Hz             int64   // Clock speed, if known, 0 otherwise. Will attempt to contain base clock speed.
 | ||
| 	BoostFreq      int64   // Max clock speed, if known, 0 otherwise
 | ||
| 	Cache          struct {
 | ||
| 		L1I int // L1 Instruction Cache (per core or shared). Will be -1 if undetected
 | ||
| 		L1D int // L1 Data Cache (per core or shared). Will be -1 if undetected
 | ||
| 		L2  int // L2 Cache (per core or shared). Will be -1 if undetected
 | ||
| 		L3  int // L3 Cache (per core, per ccx or shared). Will be -1 if undetected
 | ||
| 	}
 | ||
| 	SGX       SGXSupport
 | ||
| 	maxFunc   uint32
 | ||
| 	maxExFunc uint32
 | ||
| }
 | ||
| 
 | ||
| var cpuid func(op uint32) (eax, ebx, ecx, edx uint32)
 | ||
| var cpuidex func(op, op2 uint32) (eax, ebx, ecx, edx uint32)
 | ||
| var xgetbv func(index uint32) (eax, edx uint32)
 | ||
| var rdtscpAsm func() (eax, ebx, ecx, edx uint32)
 | ||
| var darwinHasAVX512 = func() bool { return false }
 | ||
| 
 | ||
| // CPU contains information about the CPU as detected on startup,
 | ||
| // or when Detect last was called.
 | ||
| //
 | ||
| // Use this as the primary entry point to you data.
 | ||
| var CPU CPUInfo
 | ||
| 
 | ||
| func init() {
 | ||
| 	initCPU()
 | ||
| 	Detect()
 | ||
| }
 | ||
| 
 | ||
| // Detect will re-detect current CPU info.
 | ||
| // This will replace the content of the exported CPU variable.
 | ||
| //
 | ||
| // Unless you expect the CPU to change while you are running your program
 | ||
| // you should not need to call this function.
 | ||
| // If you call this, you must ensure that no other goroutine is accessing the
 | ||
| // exported CPU variable.
 | ||
| func Detect() {
 | ||
| 	// Set defaults
 | ||
| 	CPU.ThreadsPerCore = 1
 | ||
| 	CPU.Cache.L1I = -1
 | ||
| 	CPU.Cache.L1D = -1
 | ||
| 	CPU.Cache.L2 = -1
 | ||
| 	CPU.Cache.L3 = -1
 | ||
| 	safe := true
 | ||
| 	if detectArmFlag != nil {
 | ||
| 		safe = !*detectArmFlag
 | ||
| 	}
 | ||
| 	addInfo(&CPU, safe)
 | ||
| 	if displayFeats != nil && *displayFeats {
 | ||
| 		fmt.Println("cpu features:", strings.Join(CPU.FeatureSet(), ","))
 | ||
| 		// Exit with non-zero so tests will print value.
 | ||
| 		os.Exit(1)
 | ||
| 	}
 | ||
| 	if disableFlag != nil {
 | ||
| 		s := strings.Split(*disableFlag, ",")
 | ||
| 		for _, feat := range s {
 | ||
| 			feat := ParseFeature(strings.TrimSpace(feat))
 | ||
| 			if feat != UNKNOWN {
 | ||
| 				CPU.featureSet.unset(feat)
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| // DetectARM will detect ARM64 features.
 | ||
| // This is NOT done automatically since it can potentially crash
 | ||
| // if the OS does not handle the command.
 | ||
| // If in the future this can be done safely this function may not
 | ||
| // do anything.
 | ||
| func DetectARM() {
 | ||
| 	addInfo(&CPU, false)
 | ||
| }
 | ||
| 
 | ||
| var detectArmFlag *bool
 | ||
| var displayFeats *bool
 | ||
| var disableFlag *string
 | ||
| 
 | ||
| // Flags will enable flags.
 | ||
| // This must be called *before* flag.Parse AND
 | ||
| // Detect must be called after the flags have been parsed.
 | ||
| // Note that this means that any detection used in init() functions
 | ||
| // will not contain these flags.
 | ||
| func Flags() {
 | ||
| 	disableFlag = flag.String("cpu.disable", "", "disable cpu features; comma separated list")
 | ||
| 	displayFeats = flag.Bool("cpu.features", false, "lists cpu features and exits")
 | ||
| 	detectArmFlag = flag.Bool("cpu.arm", false, "allow ARM features to be detected; can potentially crash")
 | ||
| }
 | ||
| 
 | ||
| // Supports returns whether the CPU supports all of the requested features.
 | ||
| func (c CPUInfo) Supports(ids ...FeatureID) bool {
 | ||
| 	for _, id := range ids {
 | ||
| 		if !c.featureSet.inSet(id) {
 | ||
| 			return false
 | ||
| 		}
 | ||
| 	}
 | ||
| 	return true
 | ||
| }
 | ||
| 
 | ||
| // Has allows for checking a single feature.
 | ||
| // Should be inlined by the compiler.
 | ||
| func (c *CPUInfo) Has(id FeatureID) bool {
 | ||
| 	return c.featureSet.inSet(id)
 | ||
| }
 | ||
| 
 | ||
| // AnyOf returns whether the CPU supports one or more of the requested features.
 | ||
| func (c CPUInfo) AnyOf(ids ...FeatureID) bool {
 | ||
| 	for _, id := range ids {
 | ||
| 		if c.featureSet.inSet(id) {
 | ||
| 			return true
 | ||
| 		}
 | ||
| 	}
 | ||
| 	return false
 | ||
| }
 | ||
| 
 | ||
| // Features contains several features combined for a fast check using
 | ||
| // CpuInfo.HasAll
 | ||
| type Features *flagSet
 | ||
| 
 | ||
| // CombineFeatures allows to combine several features for a close to constant time lookup.
 | ||
| func CombineFeatures(ids ...FeatureID) Features {
 | ||
| 	var v flagSet
 | ||
| 	for _, id := range ids {
 | ||
| 		v.set(id)
 | ||
| 	}
 | ||
| 	return &v
 | ||
| }
 | ||
| 
 | ||
| func (c *CPUInfo) HasAll(f Features) bool {
 | ||
| 	return c.featureSet.hasSetP(f)
 | ||
| }
 | ||
| 
 | ||
| // https://en.wikipedia.org/wiki/X86-64#Microarchitecture_levels
 | ||
| var oneOfLevel = CombineFeatures(SYSEE, SYSCALL)
 | ||
| var level1Features = CombineFeatures(CMOV, CMPXCHG8, X87, FXSR, MMX, SSE, SSE2)
 | ||
| var level2Features = CombineFeatures(CMOV, CMPXCHG8, X87, FXSR, MMX, SSE, SSE2, CX16, LAHF, POPCNT, SSE3, SSE4, SSE42, SSSE3)
 | ||
| var level3Features = CombineFeatures(CMOV, CMPXCHG8, X87, FXSR, MMX, SSE, SSE2, CX16, LAHF, POPCNT, SSE3, SSE4, SSE42, SSSE3, AVX, AVX2, BMI1, BMI2, F16C, FMA3, LZCNT, MOVBE, OSXSAVE)
 | ||
| var level4Features = CombineFeatures(CMOV, CMPXCHG8, X87, FXSR, MMX, SSE, SSE2, CX16, LAHF, POPCNT, SSE3, SSE4, SSE42, SSSE3, AVX, AVX2, BMI1, BMI2, F16C, FMA3, LZCNT, MOVBE, OSXSAVE, AVX512F, AVX512BW, AVX512CD, AVX512DQ, AVX512VL)
 | ||
| 
 | ||
| // X64Level returns the microarchitecture level detected on the CPU.
 | ||
| // If features are lacking or non x64 mode, 0 is returned.
 | ||
| // See https://en.wikipedia.org/wiki/X86-64#Microarchitecture_levels
 | ||
| func (c CPUInfo) X64Level() int {
 | ||
| 	if !c.featureSet.hasOneOf(oneOfLevel) {
 | ||
| 		return 0
 | ||
| 	}
 | ||
| 	if c.featureSet.hasSetP(level4Features) {
 | ||
| 		return 4
 | ||
| 	}
 | ||
| 	if c.featureSet.hasSetP(level3Features) {
 | ||
| 		return 3
 | ||
| 	}
 | ||
| 	if c.featureSet.hasSetP(level2Features) {
 | ||
| 		return 2
 | ||
| 	}
 | ||
| 	if c.featureSet.hasSetP(level1Features) {
 | ||
| 		return 1
 | ||
| 	}
 | ||
| 	return 0
 | ||
| }
 | ||
| 
 | ||
| // Disable will disable one or several features.
 | ||
| func (c *CPUInfo) Disable(ids ...FeatureID) bool {
 | ||
| 	for _, id := range ids {
 | ||
| 		c.featureSet.unset(id)
 | ||
| 	}
 | ||
| 	return true
 | ||
| }
 | ||
| 
 | ||
| // Enable will disable one or several features even if they were undetected.
 | ||
| // This is of course not recommended for obvious reasons.
 | ||
| func (c *CPUInfo) Enable(ids ...FeatureID) bool {
 | ||
| 	for _, id := range ids {
 | ||
| 		c.featureSet.set(id)
 | ||
| 	}
 | ||
| 	return true
 | ||
| }
 | ||
| 
 | ||
| // IsVendor returns true if vendor is recognized as Intel
 | ||
| func (c CPUInfo) IsVendor(v Vendor) bool {
 | ||
| 	return c.VendorID == v
 | ||
| }
 | ||
| 
 | ||
| // FeatureSet returns all available features as strings.
 | ||
| func (c CPUInfo) FeatureSet() []string {
 | ||
| 	s := make([]string, 0, c.featureSet.nEnabled())
 | ||
| 	s = append(s, c.featureSet.Strings()...)
 | ||
| 	return s
 | ||
| }
 | ||
| 
 | ||
| // RTCounter returns the 64-bit time-stamp counter
 | ||
| // Uses the RDTSCP instruction. The value 0 is returned
 | ||
| // if the CPU does not support the instruction.
 | ||
| func (c CPUInfo) RTCounter() uint64 {
 | ||
| 	if !c.Supports(RDTSCP) {
 | ||
| 		return 0
 | ||
| 	}
 | ||
| 	a, _, _, d := rdtscpAsm()
 | ||
| 	return uint64(a) | (uint64(d) << 32)
 | ||
| }
 | ||
| 
 | ||
| // Ia32TscAux returns the IA32_TSC_AUX part of the RDTSCP.
 | ||
| // This variable is OS dependent, but on Linux contains information
 | ||
| // about the current cpu/core the code is running on.
 | ||
| // If the RDTSCP instruction isn't supported on the CPU, the value 0 is returned.
 | ||
| func (c CPUInfo) Ia32TscAux() uint32 {
 | ||
| 	if !c.Supports(RDTSCP) {
 | ||
| 		return 0
 | ||
| 	}
 | ||
| 	_, _, ecx, _ := rdtscpAsm()
 | ||
| 	return ecx
 | ||
| }
 | ||
| 
 | ||
| // LogicalCPU will return the Logical CPU the code is currently executing on.
 | ||
| // This is likely to change when the OS re-schedules the running thread
 | ||
| // to another CPU.
 | ||
| // If the current core cannot be detected, -1 will be returned.
 | ||
| func (c CPUInfo) LogicalCPU() int {
 | ||
| 	if c.maxFunc < 1 {
 | ||
| 		return -1
 | ||
| 	}
 | ||
| 	_, ebx, _, _ := cpuid(1)
 | ||
| 	return int(ebx >> 24)
 | ||
| }
 | ||
| 
 | ||
| // frequencies tries to compute the clock speed of the CPU. If leaf 15 is
 | ||
| // supported, use it, otherwise parse the brand string. Yes, really.
 | ||
| func (c *CPUInfo) frequencies() {
 | ||
| 	c.Hz, c.BoostFreq = 0, 0
 | ||
| 	mfi := maxFunctionID()
 | ||
| 	if mfi >= 0x15 {
 | ||
| 		eax, ebx, ecx, _ := cpuid(0x15)
 | ||
| 		if eax != 0 && ebx != 0 && ecx != 0 {
 | ||
| 			c.Hz = (int64(ecx) * int64(ebx)) / int64(eax)
 | ||
| 		}
 | ||
| 	}
 | ||
| 	if mfi >= 0x16 {
 | ||
| 		a, b, _, _ := cpuid(0x16)
 | ||
| 		// Base...
 | ||
| 		if a&0xffff > 0 {
 | ||
| 			c.Hz = int64(a&0xffff) * 1_000_000
 | ||
| 		}
 | ||
| 		// Boost...
 | ||
| 		if b&0xffff > 0 {
 | ||
| 			c.BoostFreq = int64(b&0xffff) * 1_000_000
 | ||
| 		}
 | ||
| 	}
 | ||
| 	if c.Hz > 0 {
 | ||
| 		return
 | ||
| 	}
 | ||
| 
 | ||
| 	// computeHz determines the official rated speed of a CPU from its brand
 | ||
| 	// string. This insanity is *actually the official documented way to do
 | ||
| 	// this according to Intel*, prior to leaf 0x15 existing. The official
 | ||
| 	// documentation only shows this working for exactly `x.xx` or `xxxx`
 | ||
| 	// cases, e.g., `2.50GHz` or `1300MHz`; this parser will accept other
 | ||
| 	// sizes.
 | ||
| 	model := c.BrandName
 | ||
| 	hz := strings.LastIndex(model, "Hz")
 | ||
| 	if hz < 3 {
 | ||
| 		return
 | ||
| 	}
 | ||
| 	var multiplier int64
 | ||
| 	switch model[hz-1] {
 | ||
| 	case 'M':
 | ||
| 		multiplier = 1000 * 1000
 | ||
| 	case 'G':
 | ||
| 		multiplier = 1000 * 1000 * 1000
 | ||
| 	case 'T':
 | ||
| 		multiplier = 1000 * 1000 * 1000 * 1000
 | ||
| 	}
 | ||
| 	if multiplier == 0 {
 | ||
| 		return
 | ||
| 	}
 | ||
| 	freq := int64(0)
 | ||
| 	divisor := int64(0)
 | ||
| 	decimalShift := int64(1)
 | ||
| 	var i int
 | ||
| 	for i = hz - 2; i >= 0 && model[i] != ' '; i-- {
 | ||
| 		if model[i] >= '0' && model[i] <= '9' {
 | ||
| 			freq += int64(model[i]-'0') * decimalShift
 | ||
| 			decimalShift *= 10
 | ||
| 		} else if model[i] == '.' {
 | ||
| 			if divisor != 0 {
 | ||
| 				return
 | ||
| 			}
 | ||
| 			divisor = decimalShift
 | ||
| 		} else {
 | ||
| 			return
 | ||
| 		}
 | ||
| 	}
 | ||
| 	// we didn't find a space
 | ||
| 	if i < 0 {
 | ||
| 		return
 | ||
| 	}
 | ||
| 	if divisor != 0 {
 | ||
| 		c.Hz = (freq * multiplier) / divisor
 | ||
| 		return
 | ||
| 	}
 | ||
| 	c.Hz = freq * multiplier
 | ||
| }
 | ||
| 
 | ||
| // VM Will return true if the cpu id indicates we are in
 | ||
| // a virtual machine.
 | ||
| func (c CPUInfo) VM() bool {
 | ||
| 	return CPU.featureSet.inSet(HYPERVISOR)
 | ||
| }
 | ||
| 
 | ||
| // flags contains detected cpu features and characteristics
 | ||
| type flags uint64
 | ||
| 
 | ||
| // log2(bits_in_uint64)
 | ||
| const flagBitsLog2 = 6
 | ||
| const flagBits = 1 << flagBitsLog2
 | ||
| const flagMask = flagBits - 1
 | ||
| 
 | ||
| // flagSet contains detected cpu features and characteristics in an array of flags
 | ||
| type flagSet [(lastID + flagMask) / flagBits]flags
 | ||
| 
 | ||
| func (s *flagSet) inSet(feat FeatureID) bool {
 | ||
| 	return s[feat>>flagBitsLog2]&(1<<(feat&flagMask)) != 0
 | ||
| }
 | ||
| 
 | ||
| func (s *flagSet) set(feat FeatureID) {
 | ||
| 	s[feat>>flagBitsLog2] |= 1 << (feat & flagMask)
 | ||
| }
 | ||
| 
 | ||
| // setIf will set a feature if boolean is true.
 | ||
| func (s *flagSet) setIf(cond bool, features ...FeatureID) {
 | ||
| 	if cond {
 | ||
| 		for _, offset := range features {
 | ||
| 			s[offset>>flagBitsLog2] |= 1 << (offset & flagMask)
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| func (s *flagSet) unset(offset FeatureID) {
 | ||
| 	bit := flags(1 << (offset & flagMask))
 | ||
| 	s[offset>>flagBitsLog2] = s[offset>>flagBitsLog2] & ^bit
 | ||
| }
 | ||
| 
 | ||
| // or with another flagset.
 | ||
| func (s *flagSet) or(other flagSet) {
 | ||
| 	for i, v := range other[:] {
 | ||
| 		s[i] |= v
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| // hasSet returns whether all features are present.
 | ||
| func (s *flagSet) hasSet(other flagSet) bool {
 | ||
| 	for i, v := range other[:] {
 | ||
| 		if s[i]&v != v {
 | ||
| 			return false
 | ||
| 		}
 | ||
| 	}
 | ||
| 	return true
 | ||
| }
 | ||
| 
 | ||
| // hasSet returns whether all features are present.
 | ||
| func (s *flagSet) hasSetP(other *flagSet) bool {
 | ||
| 	for i, v := range other[:] {
 | ||
| 		if s[i]&v != v {
 | ||
| 			return false
 | ||
| 		}
 | ||
| 	}
 | ||
| 	return true
 | ||
| }
 | ||
| 
 | ||
| // hasOneOf returns whether one or more features are present.
 | ||
| func (s *flagSet) hasOneOf(other *flagSet) bool {
 | ||
| 	for i, v := range other[:] {
 | ||
| 		if s[i]&v != 0 {
 | ||
| 			return true
 | ||
| 		}
 | ||
| 	}
 | ||
| 	return false
 | ||
| }
 | ||
| 
 | ||
| // nEnabled will return the number of enabled flags.
 | ||
| func (s *flagSet) nEnabled() (n int) {
 | ||
| 	for _, v := range s[:] {
 | ||
| 		n += bits.OnesCount64(uint64(v))
 | ||
| 	}
 | ||
| 	return n
 | ||
| }
 | ||
| 
 | ||
| func flagSetWith(feat ...FeatureID) flagSet {
 | ||
| 	var res flagSet
 | ||
| 	for _, f := range feat {
 | ||
| 		res.set(f)
 | ||
| 	}
 | ||
| 	return res
 | ||
| }
 | ||
| 
 | ||
| // ParseFeature will parse the string and return the ID of the matching feature.
 | ||
| // Will return UNKNOWN if not found.
 | ||
| func ParseFeature(s string) FeatureID {
 | ||
| 	s = strings.ToUpper(s)
 | ||
| 	for i := firstID; i < lastID; i++ {
 | ||
| 		if i.String() == s {
 | ||
| 			return i
 | ||
| 		}
 | ||
| 	}
 | ||
| 	return UNKNOWN
 | ||
| }
 | ||
| 
 | ||
| // Strings returns an array of the detected features for FlagsSet.
 | ||
| func (s flagSet) Strings() []string {
 | ||
| 	if len(s) == 0 {
 | ||
| 		return []string{""}
 | ||
| 	}
 | ||
| 	r := make([]string, 0)
 | ||
| 	for i := firstID; i < lastID; i++ {
 | ||
| 		if s.inSet(i) {
 | ||
| 			r = append(r, i.String())
 | ||
| 		}
 | ||
| 	}
 | ||
| 	return r
 | ||
| }
 | ||
| 
 | ||
| func maxExtendedFunction() uint32 {
 | ||
| 	eax, _, _, _ := cpuid(0x80000000)
 | ||
| 	return eax
 | ||
| }
 | ||
| 
 | ||
| func maxFunctionID() uint32 {
 | ||
| 	a, _, _, _ := cpuid(0)
 | ||
| 	return a
 | ||
| }
 | ||
| 
 | ||
| func brandName() string {
 | ||
| 	if maxExtendedFunction() >= 0x80000004 {
 | ||
| 		v := make([]uint32, 0, 48)
 | ||
| 		for i := uint32(0); i < 3; i++ {
 | ||
| 			a, b, c, d := cpuid(0x80000002 + i)
 | ||
| 			v = append(v, a, b, c, d)
 | ||
| 		}
 | ||
| 		return strings.Trim(string(valAsString(v...)), " ")
 | ||
| 	}
 | ||
| 	return "unknown"
 | ||
| }
 | ||
| 
 | ||
| func threadsPerCore() int {
 | ||
| 	mfi := maxFunctionID()
 | ||
| 	vend, _ := vendorID()
 | ||
| 
 | ||
| 	if mfi < 0x4 || (vend != Intel && vend != AMD) {
 | ||
| 		return 1
 | ||
| 	}
 | ||
| 
 | ||
| 	if mfi < 0xb {
 | ||
| 		if vend != Intel {
 | ||
| 			return 1
 | ||
| 		}
 | ||
| 		_, b, _, d := cpuid(1)
 | ||
| 		if (d & (1 << 28)) != 0 {
 | ||
| 			// v will contain logical core count
 | ||
| 			v := (b >> 16) & 255
 | ||
| 			if v > 1 {
 | ||
| 				a4, _, _, _ := cpuid(4)
 | ||
| 				// physical cores
 | ||
| 				v2 := (a4 >> 26) + 1
 | ||
| 				if v2 > 0 {
 | ||
| 					return int(v) / int(v2)
 | ||
| 				}
 | ||
| 			}
 | ||
| 		}
 | ||
| 		return 1
 | ||
| 	}
 | ||
| 	_, b, _, _ := cpuidex(0xb, 0)
 | ||
| 	if b&0xffff == 0 {
 | ||
| 		if vend == AMD {
 | ||
| 			// Workaround for AMD returning 0, assume 2 if >= Zen 2
 | ||
| 			// It will be more correct than not.
 | ||
| 			fam, _, _ := familyModel()
 | ||
| 			_, _, _, d := cpuid(1)
 | ||
| 			if (d&(1<<28)) != 0 && fam >= 23 {
 | ||
| 				return 2
 | ||
| 			}
 | ||
| 		}
 | ||
| 		return 1
 | ||
| 	}
 | ||
| 	return int(b & 0xffff)
 | ||
| }
 | ||
| 
 | ||
| func logicalCores() int {
 | ||
| 	mfi := maxFunctionID()
 | ||
| 	v, _ := vendorID()
 | ||
| 	switch v {
 | ||
| 	case Intel:
 | ||
| 		// Use this on old Intel processors
 | ||
| 		if mfi < 0xb {
 | ||
| 			if mfi < 1 {
 | ||
| 				return 0
 | ||
| 			}
 | ||
| 			// CPUID.1:EBX[23:16] represents the maximum number of addressable IDs (initial APIC ID)
 | ||
| 			// that can be assigned to logical processors in a physical package.
 | ||
| 			// The value may not be the same as the number of logical processors that are present in the hardware of a physical package.
 | ||
| 			_, ebx, _, _ := cpuid(1)
 | ||
| 			logical := (ebx >> 16) & 0xff
 | ||
| 			return int(logical)
 | ||
| 		}
 | ||
| 		_, b, _, _ := cpuidex(0xb, 1)
 | ||
| 		return int(b & 0xffff)
 | ||
| 	case AMD, Hygon:
 | ||
| 		_, b, _, _ := cpuid(1)
 | ||
| 		return int((b >> 16) & 0xff)
 | ||
| 	default:
 | ||
| 		return 0
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| func familyModel() (family, model, stepping int) {
 | ||
| 	if maxFunctionID() < 0x1 {
 | ||
| 		return 0, 0, 0
 | ||
| 	}
 | ||
| 	eax, _, _, _ := cpuid(1)
 | ||
| 	// If BaseFamily[3:0] is less than Fh then ExtendedFamily[7:0] is reserved and Family is equal to BaseFamily[3:0].
 | ||
| 	family = int((eax >> 8) & 0xf)
 | ||
| 	extFam := family == 0x6 // Intel is 0x6, needs extended model.
 | ||
| 	if family == 0xf {
 | ||
| 		// Add ExtFamily
 | ||
| 		family += int((eax >> 20) & 0xff)
 | ||
| 		extFam = true
 | ||
| 	}
 | ||
| 	// If BaseFamily[3:0] is less than 0Fh then ExtendedModel[3:0] is reserved and Model is equal to BaseModel[3:0].
 | ||
| 	model = int((eax >> 4) & 0xf)
 | ||
| 	if extFam {
 | ||
| 		// Add ExtModel
 | ||
| 		model += int((eax >> 12) & 0xf0)
 | ||
| 	}
 | ||
| 	stepping = int(eax & 0xf)
 | ||
| 	return family, model, stepping
 | ||
| }
 | ||
| 
 | ||
| func physicalCores() int {
 | ||
| 	v, _ := vendorID()
 | ||
| 	switch v {
 | ||
| 	case Intel:
 | ||
| 		return logicalCores() / threadsPerCore()
 | ||
| 	case AMD, Hygon:
 | ||
| 		lc := logicalCores()
 | ||
| 		tpc := threadsPerCore()
 | ||
| 		if lc > 0 && tpc > 0 {
 | ||
| 			return lc / tpc
 | ||
| 		}
 | ||
| 
 | ||
| 		// The following is inaccurate on AMD EPYC 7742 64-Core Processor
 | ||
| 		if maxExtendedFunction() >= 0x80000008 {
 | ||
| 			_, _, c, _ := cpuid(0x80000008)
 | ||
| 			if c&0xff > 0 {
 | ||
| 				return int(c&0xff) + 1
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 	return 0
 | ||
| }
 | ||
| 
 | ||
| // Except from http://en.wikipedia.org/wiki/CPUID#EAX.3D0:_Get_vendor_ID
 | ||
| var vendorMapping = map[string]Vendor{
 | ||
| 	"AMDisbetter!": AMD,
 | ||
| 	"AuthenticAMD": AMD,
 | ||
| 	"CentaurHauls": VIA,
 | ||
| 	"GenuineIntel": Intel,
 | ||
| 	"TransmetaCPU": Transmeta,
 | ||
| 	"GenuineTMx86": Transmeta,
 | ||
| 	"Geode by NSC": NSC,
 | ||
| 	"VIA VIA VIA ": VIA,
 | ||
| 	"KVMKVMKVMKVM": KVM,
 | ||
| 	"Microsoft Hv": MSVM,
 | ||
| 	"VMwareVMware": VMware,
 | ||
| 	"XenVMMXenVMM": XenHVM,
 | ||
| 	"bhyve bhyve ": Bhyve,
 | ||
| 	"HygonGenuine": Hygon,
 | ||
| 	"Vortex86 SoC": SiS,
 | ||
| 	"SiS SiS SiS ": SiS,
 | ||
| 	"RiseRiseRise": SiS,
 | ||
| 	"Genuine  RDC": RDC,
 | ||
| }
 | ||
| 
 | ||
| func vendorID() (Vendor, string) {
 | ||
| 	_, b, c, d := cpuid(0)
 | ||
| 	v := string(valAsString(b, d, c))
 | ||
| 	vend, ok := vendorMapping[v]
 | ||
| 	if !ok {
 | ||
| 		return VendorUnknown, v
 | ||
| 	}
 | ||
| 	return vend, v
 | ||
| }
 | ||
| 
 | ||
| func cacheLine() int {
 | ||
| 	if maxFunctionID() < 0x1 {
 | ||
| 		return 0
 | ||
| 	}
 | ||
| 
 | ||
| 	_, ebx, _, _ := cpuid(1)
 | ||
| 	cache := (ebx & 0xff00) >> 5 // cflush size
 | ||
| 	if cache == 0 && maxExtendedFunction() >= 0x80000006 {
 | ||
| 		_, _, ecx, _ := cpuid(0x80000006)
 | ||
| 		cache = ecx & 0xff // cacheline size
 | ||
| 	}
 | ||
| 	// TODO: Read from Cache and TLB Information
 | ||
| 	return int(cache)
 | ||
| }
 | ||
| 
 | ||
| func (c *CPUInfo) cacheSize() {
 | ||
| 	c.Cache.L1D = -1
 | ||
| 	c.Cache.L1I = -1
 | ||
| 	c.Cache.L2 = -1
 | ||
| 	c.Cache.L3 = -1
 | ||
| 	vendor, _ := vendorID()
 | ||
| 	switch vendor {
 | ||
| 	case Intel:
 | ||
| 		if maxFunctionID() < 4 {
 | ||
| 			return
 | ||
| 		}
 | ||
| 		c.Cache.L1I, c.Cache.L1D, c.Cache.L2, c.Cache.L3 = 0, 0, 0, 0
 | ||
| 		for i := uint32(0); ; i++ {
 | ||
| 			eax, ebx, ecx, _ := cpuidex(4, i)
 | ||
| 			cacheType := eax & 15
 | ||
| 			if cacheType == 0 {
 | ||
| 				break
 | ||
| 			}
 | ||
| 			cacheLevel := (eax >> 5) & 7
 | ||
| 			coherency := int(ebx&0xfff) + 1
 | ||
| 			partitions := int((ebx>>12)&0x3ff) + 1
 | ||
| 			associativity := int((ebx>>22)&0x3ff) + 1
 | ||
| 			sets := int(ecx) + 1
 | ||
| 			size := associativity * partitions * coherency * sets
 | ||
| 			switch cacheLevel {
 | ||
| 			case 1:
 | ||
| 				if cacheType == 1 {
 | ||
| 					// 1 = Data Cache
 | ||
| 					c.Cache.L1D = size
 | ||
| 				} else if cacheType == 2 {
 | ||
| 					// 2 = Instruction Cache
 | ||
| 					c.Cache.L1I = size
 | ||
| 				} else {
 | ||
| 					if c.Cache.L1D < 0 {
 | ||
| 						c.Cache.L1I = size
 | ||
| 					}
 | ||
| 					if c.Cache.L1I < 0 {
 | ||
| 						c.Cache.L1I = size
 | ||
| 					}
 | ||
| 				}
 | ||
| 			case 2:
 | ||
| 				c.Cache.L2 = size
 | ||
| 			case 3:
 | ||
| 				c.Cache.L3 = size
 | ||
| 			}
 | ||
| 		}
 | ||
| 	case AMD, Hygon:
 | ||
| 		// Untested.
 | ||
| 		if maxExtendedFunction() < 0x80000005 {
 | ||
| 			return
 | ||
| 		}
 | ||
| 		_, _, ecx, edx := cpuid(0x80000005)
 | ||
| 		c.Cache.L1D = int(((ecx >> 24) & 0xFF) * 1024)
 | ||
| 		c.Cache.L1I = int(((edx >> 24) & 0xFF) * 1024)
 | ||
| 
 | ||
| 		if maxExtendedFunction() < 0x80000006 {
 | ||
| 			return
 | ||
| 		}
 | ||
| 		_, _, ecx, _ = cpuid(0x80000006)
 | ||
| 		c.Cache.L2 = int(((ecx >> 16) & 0xFFFF) * 1024)
 | ||
| 
 | ||
| 		// CPUID Fn8000_001D_EAX_x[N:0] Cache Properties
 | ||
| 		if maxExtendedFunction() < 0x8000001D || !c.Has(TOPEXT) {
 | ||
| 			return
 | ||
| 		}
 | ||
| 
 | ||
| 		// Xen Hypervisor is buggy and returns the same entry no matter ECX value.
 | ||
| 		// Hack: When we encounter the same entry 100 times we break.
 | ||
| 		nSame := 0
 | ||
| 		var last uint32
 | ||
| 		for i := uint32(0); i < math.MaxUint32; i++ {
 | ||
| 			eax, ebx, ecx, _ := cpuidex(0x8000001D, i)
 | ||
| 
 | ||
| 			level := (eax >> 5) & 7
 | ||
| 			cacheNumSets := ecx + 1
 | ||
| 			cacheLineSize := 1 + (ebx & 2047)
 | ||
| 			cachePhysPartitions := 1 + ((ebx >> 12) & 511)
 | ||
| 			cacheNumWays := 1 + ((ebx >> 22) & 511)
 | ||
| 
 | ||
| 			typ := eax & 15
 | ||
| 			size := int(cacheNumSets * cacheLineSize * cachePhysPartitions * cacheNumWays)
 | ||
| 			if typ == 0 {
 | ||
| 				return
 | ||
| 			}
 | ||
| 
 | ||
| 			// Check for the same value repeated.
 | ||
| 			comb := eax ^ ebx ^ ecx
 | ||
| 			if comb == last {
 | ||
| 				nSame++
 | ||
| 				if nSame == 100 {
 | ||
| 					return
 | ||
| 				}
 | ||
| 			}
 | ||
| 			last = comb
 | ||
| 
 | ||
| 			switch level {
 | ||
| 			case 1:
 | ||
| 				switch typ {
 | ||
| 				case 1:
 | ||
| 					// Data cache
 | ||
| 					c.Cache.L1D = size
 | ||
| 				case 2:
 | ||
| 					// Inst cache
 | ||
| 					c.Cache.L1I = size
 | ||
| 				default:
 | ||
| 					if c.Cache.L1D < 0 {
 | ||
| 						c.Cache.L1I = size
 | ||
| 					}
 | ||
| 					if c.Cache.L1I < 0 {
 | ||
| 						c.Cache.L1I = size
 | ||
| 					}
 | ||
| 				}
 | ||
| 			case 2:
 | ||
| 				c.Cache.L2 = size
 | ||
| 			case 3:
 | ||
| 				c.Cache.L3 = size
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| type SGXEPCSection struct {
 | ||
| 	BaseAddress uint64
 | ||
| 	EPCSize     uint64
 | ||
| }
 | ||
| 
 | ||
| type SGXSupport struct {
 | ||
| 	Available           bool
 | ||
| 	LaunchControl       bool
 | ||
| 	SGX1Supported       bool
 | ||
| 	SGX2Supported       bool
 | ||
| 	MaxEnclaveSizeNot64 int64
 | ||
| 	MaxEnclaveSize64    int64
 | ||
| 	EPCSections         []SGXEPCSection
 | ||
| }
 | ||
| 
 | ||
| func hasSGX(available, lc bool) (rval SGXSupport) {
 | ||
| 	rval.Available = available
 | ||
| 
 | ||
| 	if !available {
 | ||
| 		return
 | ||
| 	}
 | ||
| 
 | ||
| 	rval.LaunchControl = lc
 | ||
| 
 | ||
| 	a, _, _, d := cpuidex(0x12, 0)
 | ||
| 	rval.SGX1Supported = a&0x01 != 0
 | ||
| 	rval.SGX2Supported = a&0x02 != 0
 | ||
| 	rval.MaxEnclaveSizeNot64 = 1 << (d & 0xFF)     // pow 2
 | ||
| 	rval.MaxEnclaveSize64 = 1 << ((d >> 8) & 0xFF) // pow 2
 | ||
| 	rval.EPCSections = make([]SGXEPCSection, 0)
 | ||
| 
 | ||
| 	for subleaf := uint32(2); subleaf < 2+8; subleaf++ {
 | ||
| 		eax, ebx, ecx, edx := cpuidex(0x12, subleaf)
 | ||
| 		leafType := eax & 0xf
 | ||
| 
 | ||
| 		if leafType == 0 {
 | ||
| 			// Invalid subleaf, stop iterating
 | ||
| 			break
 | ||
| 		} else if leafType == 1 {
 | ||
| 			// EPC Section subleaf
 | ||
| 			baseAddress := uint64(eax&0xfffff000) + (uint64(ebx&0x000fffff) << 32)
 | ||
| 			size := uint64(ecx&0xfffff000) + (uint64(edx&0x000fffff) << 32)
 | ||
| 
 | ||
| 			section := SGXEPCSection{BaseAddress: baseAddress, EPCSize: size}
 | ||
| 			rval.EPCSections = append(rval.EPCSections, section)
 | ||
| 		}
 | ||
| 	}
 | ||
| 
 | ||
| 	return
 | ||
| }
 | ||
| 
 | ||
| func support() flagSet {
 | ||
| 	var fs flagSet
 | ||
| 	mfi := maxFunctionID()
 | ||
| 	vend, _ := vendorID()
 | ||
| 	if mfi < 0x1 {
 | ||
| 		return fs
 | ||
| 	}
 | ||
| 	family, model, _ := familyModel()
 | ||
| 
 | ||
| 	_, _, c, d := cpuid(1)
 | ||
| 	fs.setIf((d&(1<<0)) != 0, X87)
 | ||
| 	fs.setIf((d&(1<<8)) != 0, CMPXCHG8)
 | ||
| 	fs.setIf((d&(1<<11)) != 0, SYSEE)
 | ||
| 	fs.setIf((d&(1<<15)) != 0, CMOV)
 | ||
| 	fs.setIf((d&(1<<23)) != 0, MMX)
 | ||
| 	fs.setIf((d&(1<<24)) != 0, FXSR)
 | ||
| 	fs.setIf((d&(1<<25)) != 0, FXSROPT)
 | ||
| 	fs.setIf((d&(1<<25)) != 0, SSE)
 | ||
| 	fs.setIf((d&(1<<26)) != 0, SSE2)
 | ||
| 	fs.setIf((c&1) != 0, SSE3)
 | ||
| 	fs.setIf((c&(1<<5)) != 0, VMX)
 | ||
| 	fs.setIf((c&(1<<9)) != 0, SSSE3)
 | ||
| 	fs.setIf((c&(1<<19)) != 0, SSE4)
 | ||
| 	fs.setIf((c&(1<<20)) != 0, SSE42)
 | ||
| 	fs.setIf((c&(1<<25)) != 0, AESNI)
 | ||
| 	fs.setIf((c&(1<<1)) != 0, CLMUL)
 | ||
| 	fs.setIf(c&(1<<22) != 0, MOVBE)
 | ||
| 	fs.setIf(c&(1<<23) != 0, POPCNT)
 | ||
| 	fs.setIf(c&(1<<30) != 0, RDRAND)
 | ||
| 
 | ||
| 	// This bit has been reserved by Intel & AMD for use by hypervisors,
 | ||
| 	// and indicates the presence of a hypervisor.
 | ||
| 	fs.setIf(c&(1<<31) != 0, HYPERVISOR)
 | ||
| 	fs.setIf(c&(1<<29) != 0, F16C)
 | ||
| 	fs.setIf(c&(1<<13) != 0, CX16)
 | ||
| 
 | ||
| 	if vend == Intel && (d&(1<<28)) != 0 && mfi >= 4 {
 | ||
| 		fs.setIf(threadsPerCore() > 1, HTT)
 | ||
| 	}
 | ||
| 	if vend == AMD && (d&(1<<28)) != 0 && mfi >= 4 {
 | ||
| 		fs.setIf(threadsPerCore() > 1, HTT)
 | ||
| 	}
 | ||
| 	fs.setIf(c&1<<26 != 0, XSAVE)
 | ||
| 	fs.setIf(c&1<<27 != 0, OSXSAVE)
 | ||
| 	// Check XGETBV/XSAVE (26), OXSAVE (27) and AVX (28) bits
 | ||
| 	const avxCheck = 1<<26 | 1<<27 | 1<<28
 | ||
| 	if c&avxCheck == avxCheck {
 | ||
| 		// Check for OS support
 | ||
| 		eax, _ := xgetbv(0)
 | ||
| 		if (eax & 0x6) == 0x6 {
 | ||
| 			fs.set(AVX)
 | ||
| 			switch vend {
 | ||
| 			case Intel:
 | ||
| 				// Older than Haswell.
 | ||
| 				fs.setIf(family == 6 && model < 60, AVXSLOW)
 | ||
| 			case AMD:
 | ||
| 				// Older than Zen 2
 | ||
| 				fs.setIf(family < 23 || (family == 23 && model < 49), AVXSLOW)
 | ||
| 			}
 | ||
| 		}
 | ||
| 	}
 | ||
| 	// FMA3 can be used with SSE registers, so no OS support is strictly needed.
 | ||
| 	// fma3 and OSXSAVE needed.
 | ||
| 	const fma3Check = 1<<12 | 1<<27
 | ||
| 	fs.setIf(c&fma3Check == fma3Check, FMA3)
 | ||
| 
 | ||
| 	// Check AVX2, AVX2 requires OS support, but BMI1/2 don't.
 | ||
| 	if mfi >= 7 {
 | ||
| 		_, ebx, ecx, edx := cpuidex(7, 0)
 | ||
| 		if fs.inSet(AVX) && (ebx&0x00000020) != 0 {
 | ||
| 			fs.set(AVX2)
 | ||
| 		}
 | ||
| 		// CPUID.(EAX=7, ECX=0).EBX
 | ||
| 		if (ebx & 0x00000008) != 0 {
 | ||
| 			fs.set(BMI1)
 | ||
| 			fs.setIf((ebx&0x00000100) != 0, BMI2)
 | ||
| 		}
 | ||
| 		fs.setIf(ebx&(1<<2) != 0, SGX)
 | ||
| 		fs.setIf(ebx&(1<<4) != 0, HLE)
 | ||
| 		fs.setIf(ebx&(1<<9) != 0, ERMS)
 | ||
| 		fs.setIf(ebx&(1<<11) != 0, RTM)
 | ||
| 		fs.setIf(ebx&(1<<14) != 0, MPX)
 | ||
| 		fs.setIf(ebx&(1<<18) != 0, RDSEED)
 | ||
| 		fs.setIf(ebx&(1<<19) != 0, ADX)
 | ||
| 		fs.setIf(ebx&(1<<29) != 0, SHA)
 | ||
| 
 | ||
| 		// CPUID.(EAX=7, ECX=0).ECX
 | ||
| 		fs.setIf(ecx&(1<<5) != 0, WAITPKG)
 | ||
| 		fs.setIf(ecx&(1<<7) != 0, CETSS)
 | ||
| 		fs.setIf(ecx&(1<<8) != 0, GFNI)
 | ||
| 		fs.setIf(ecx&(1<<9) != 0, VAES)
 | ||
| 		fs.setIf(ecx&(1<<10) != 0, VPCLMULQDQ)
 | ||
| 		fs.setIf(ecx&(1<<13) != 0, TME)
 | ||
| 		fs.setIf(ecx&(1<<25) != 0, CLDEMOTE)
 | ||
| 		fs.setIf(ecx&(1<<27) != 0, MOVDIRI)
 | ||
| 		fs.setIf(ecx&(1<<28) != 0, MOVDIR64B)
 | ||
| 		fs.setIf(ecx&(1<<29) != 0, ENQCMD)
 | ||
| 		fs.setIf(ecx&(1<<30) != 0, SGXLC)
 | ||
| 
 | ||
| 		// CPUID.(EAX=7, ECX=0).EDX
 | ||
| 		fs.setIf(edx&(1<<4) != 0, FSRM)
 | ||
| 		fs.setIf(edx&(1<<9) != 0, SRBDS_CTRL)
 | ||
| 		fs.setIf(edx&(1<<10) != 0, MD_CLEAR)
 | ||
| 		fs.setIf(edx&(1<<11) != 0, RTM_ALWAYS_ABORT)
 | ||
| 		fs.setIf(edx&(1<<14) != 0, SERIALIZE)
 | ||
| 		fs.setIf(edx&(1<<15) != 0, HYBRID_CPU)
 | ||
| 		fs.setIf(edx&(1<<16) != 0, TSXLDTRK)
 | ||
| 		fs.setIf(edx&(1<<18) != 0, PCONFIG)
 | ||
| 		fs.setIf(edx&(1<<20) != 0, CETIBT)
 | ||
| 		fs.setIf(edx&(1<<26) != 0, IBPB)
 | ||
| 		fs.setIf(edx&(1<<27) != 0, STIBP)
 | ||
| 		fs.setIf(edx&(1<<28) != 0, FLUSH_L1D)
 | ||
| 		fs.setIf(edx&(1<<29) != 0, IA32_ARCH_CAP)
 | ||
| 		fs.setIf(edx&(1<<30) != 0, IA32_CORE_CAP)
 | ||
| 		fs.setIf(edx&(1<<31) != 0, SPEC_CTRL_SSBD)
 | ||
| 
 | ||
| 		// CPUID.(EAX=7, ECX=1).EDX
 | ||
| 		fs.setIf(edx&(1<<4) != 0, AVXVNNIINT8)
 | ||
| 		fs.setIf(edx&(1<<5) != 0, AVXNECONVERT)
 | ||
| 		fs.setIf(edx&(1<<14) != 0, PREFETCHI)
 | ||
| 
 | ||
| 		// CPUID.(EAX=7, ECX=1).EAX
 | ||
| 		eax1, _, _, _ := cpuidex(7, 1)
 | ||
| 		fs.setIf(fs.inSet(AVX) && eax1&(1<<4) != 0, AVXVNNI)
 | ||
| 		fs.setIf(eax1&(1<<7) != 0, CMPCCXADD)
 | ||
| 		fs.setIf(eax1&(1<<10) != 0, MOVSB_ZL)
 | ||
| 		fs.setIf(eax1&(1<<11) != 0, STOSB_SHORT)
 | ||
| 		fs.setIf(eax1&(1<<12) != 0, CMPSB_SCADBS_SHORT)
 | ||
| 		fs.setIf(eax1&(1<<22) != 0, HRESET)
 | ||
| 		fs.setIf(eax1&(1<<23) != 0, AVXIFMA)
 | ||
| 		fs.setIf(eax1&(1<<26) != 0, LAM)
 | ||
| 
 | ||
| 		// Only detect AVX-512 features if XGETBV is supported
 | ||
| 		if c&((1<<26)|(1<<27)) == (1<<26)|(1<<27) {
 | ||
| 			// Check for OS support
 | ||
| 			eax, _ := xgetbv(0)
 | ||
| 
 | ||
| 			// Verify that XCR0[7:5] = ‘111b’ (OPMASK state, upper 256-bit of ZMM0-ZMM15 and
 | ||
| 			// ZMM16-ZMM31 state are enabled by OS)
 | ||
| 			/// and that XCR0[2:1] = ‘11b’ (XMM state and YMM state are enabled by OS).
 | ||
| 			hasAVX512 := (eax>>5)&7 == 7 && (eax>>1)&3 == 3
 | ||
| 			if runtime.GOOS == "darwin" {
 | ||
| 				hasAVX512 = fs.inSet(AVX) && darwinHasAVX512()
 | ||
| 			}
 | ||
| 			if hasAVX512 {
 | ||
| 				fs.setIf(ebx&(1<<16) != 0, AVX512F)
 | ||
| 				fs.setIf(ebx&(1<<17) != 0, AVX512DQ)
 | ||
| 				fs.setIf(ebx&(1<<21) != 0, AVX512IFMA)
 | ||
| 				fs.setIf(ebx&(1<<26) != 0, AVX512PF)
 | ||
| 				fs.setIf(ebx&(1<<27) != 0, AVX512ER)
 | ||
| 				fs.setIf(ebx&(1<<28) != 0, AVX512CD)
 | ||
| 				fs.setIf(ebx&(1<<30) != 0, AVX512BW)
 | ||
| 				fs.setIf(ebx&(1<<31) != 0, AVX512VL)
 | ||
| 				// ecx
 | ||
| 				fs.setIf(ecx&(1<<1) != 0, AVX512VBMI)
 | ||
| 				fs.setIf(ecx&(1<<6) != 0, AVX512VBMI2)
 | ||
| 				fs.setIf(ecx&(1<<11) != 0, AVX512VNNI)
 | ||
| 				fs.setIf(ecx&(1<<12) != 0, AVX512BITALG)
 | ||
| 				fs.setIf(ecx&(1<<14) != 0, AVX512VPOPCNTDQ)
 | ||
| 				// edx
 | ||
| 				fs.setIf(edx&(1<<8) != 0, AVX512VP2INTERSECT)
 | ||
| 				fs.setIf(edx&(1<<22) != 0, AMXBF16)
 | ||
| 				fs.setIf(edx&(1<<23) != 0, AVX512FP16)
 | ||
| 				fs.setIf(edx&(1<<24) != 0, AMXTILE)
 | ||
| 				fs.setIf(edx&(1<<25) != 0, AMXINT8)
 | ||
| 				// eax1 = CPUID.(EAX=7, ECX=1).EAX
 | ||
| 				fs.setIf(eax1&(1<<5) != 0, AVX512BF16)
 | ||
| 				fs.setIf(eax1&(1<<19) != 0, WRMSRNS)
 | ||
| 				fs.setIf(eax1&(1<<21) != 0, AMXFP16)
 | ||
| 				fs.setIf(eax1&(1<<27) != 0, MSRLIST)
 | ||
| 			}
 | ||
| 		}
 | ||
| 
 | ||
| 		// CPUID.(EAX=7, ECX=2)
 | ||
| 		_, _, _, edx = cpuidex(7, 2)
 | ||
| 		fs.setIf(edx&(1<<0) != 0, PSFD)
 | ||
| 		fs.setIf(edx&(1<<1) != 0, IDPRED_CTRL)
 | ||
| 		fs.setIf(edx&(1<<2) != 0, RRSBA_CTRL)
 | ||
| 		fs.setIf(edx&(1<<4) != 0, BHI_CTRL)
 | ||
| 		fs.setIf(edx&(1<<5) != 0, MCDT_NO)
 | ||
| 
 | ||
| 	}
 | ||
| 
 | ||
| 	// Processor Extended State Enumeration Sub-leaf (EAX = 0DH, ECX = 1)
 | ||
| 	// EAX
 | ||
| 	// Bit 00: XSAVEOPT is available.
 | ||
| 	// Bit 01: Supports XSAVEC and the compacted form of XRSTOR if set.
 | ||
| 	// Bit 02: Supports XGETBV with ECX = 1 if set.
 | ||
| 	// Bit 03: Supports XSAVES/XRSTORS and IA32_XSS if set.
 | ||
| 	// Bits 31 - 04: Reserved.
 | ||
| 	// EBX
 | ||
| 	// Bits 31 - 00: The size in bytes of the XSAVE area containing all states enabled by XCRO | IA32_XSS.
 | ||
| 	// ECX
 | ||
| 	// Bits 31 - 00: Reports the supported bits of the lower 32 bits of the IA32_XSS MSR. IA32_XSS[n] can be set to 1 only if ECX[n] is 1.
 | ||
| 	// EDX?
 | ||
| 	// Bits 07 - 00: Used for XCR0. Bit 08: PT state. Bit 09: Used for XCR0. Bits 12 - 10: Reserved. Bit 13: HWP state. Bits 31 - 14: Reserved.
 | ||
| 	if mfi >= 0xd {
 | ||
| 		if fs.inSet(XSAVE) {
 | ||
| 			eax, _, _, _ := cpuidex(0xd, 1)
 | ||
| 			fs.setIf(eax&(1<<0) != 0, XSAVEOPT)
 | ||
| 			fs.setIf(eax&(1<<1) != 0, XSAVEC)
 | ||
| 			fs.setIf(eax&(1<<2) != 0, XGETBV1)
 | ||
| 			fs.setIf(eax&(1<<3) != 0, XSAVES)
 | ||
| 		}
 | ||
| 	}
 | ||
| 	if maxExtendedFunction() >= 0x80000001 {
 | ||
| 		_, _, c, d := cpuid(0x80000001)
 | ||
| 		if (c & (1 << 5)) != 0 {
 | ||
| 			fs.set(LZCNT)
 | ||
| 			fs.set(POPCNT)
 | ||
| 		}
 | ||
| 		// ECX
 | ||
| 		fs.setIf((c&(1<<0)) != 0, LAHF)
 | ||
| 		fs.setIf((c&(1<<2)) != 0, SVM)
 | ||
| 		fs.setIf((c&(1<<6)) != 0, SSE4A)
 | ||
| 		fs.setIf((c&(1<<10)) != 0, IBS)
 | ||
| 		fs.setIf((c&(1<<22)) != 0, TOPEXT)
 | ||
| 
 | ||
| 		// EDX
 | ||
| 		fs.setIf(d&(1<<11) != 0, SYSCALL)
 | ||
| 		fs.setIf(d&(1<<20) != 0, NX)
 | ||
| 		fs.setIf(d&(1<<22) != 0, MMXEXT)
 | ||
| 		fs.setIf(d&(1<<23) != 0, MMX)
 | ||
| 		fs.setIf(d&(1<<24) != 0, FXSR)
 | ||
| 		fs.setIf(d&(1<<25) != 0, FXSROPT)
 | ||
| 		fs.setIf(d&(1<<27) != 0, RDTSCP)
 | ||
| 		fs.setIf(d&(1<<30) != 0, AMD3DNOWEXT)
 | ||
| 		fs.setIf(d&(1<<31) != 0, AMD3DNOW)
 | ||
| 
 | ||
| 		/* XOP and FMA4 use the AVX instruction coding scheme, so they can't be
 | ||
| 		 * used unless the OS has AVX support. */
 | ||
| 		if fs.inSet(AVX) {
 | ||
| 			fs.setIf((c&(1<<11)) != 0, XOP)
 | ||
| 			fs.setIf((c&(1<<16)) != 0, FMA4)
 | ||
| 		}
 | ||
| 
 | ||
| 	}
 | ||
| 	if maxExtendedFunction() >= 0x80000007 {
 | ||
| 		_, b, _, d := cpuid(0x80000007)
 | ||
| 		fs.setIf((b&(1<<0)) != 0, MCAOVERFLOW)
 | ||
| 		fs.setIf((b&(1<<1)) != 0, SUCCOR)
 | ||
| 		fs.setIf((b&(1<<2)) != 0, HWA)
 | ||
| 		fs.setIf((d&(1<<9)) != 0, CPBOOST)
 | ||
| 	}
 | ||
| 
 | ||
| 	if maxExtendedFunction() >= 0x80000008 {
 | ||
| 		_, b, _, _ := cpuid(0x80000008)
 | ||
| 		fs.setIf(b&(1<<28) != 0, PSFD)
 | ||
| 		fs.setIf(b&(1<<27) != 0, CPPC)
 | ||
| 		fs.setIf(b&(1<<24) != 0, SPEC_CTRL_SSBD)
 | ||
| 		fs.setIf(b&(1<<23) != 0, PPIN)
 | ||
| 		fs.setIf(b&(1<<21) != 0, TLB_FLUSH_NESTED)
 | ||
| 		fs.setIf(b&(1<<20) != 0, EFER_LMSLE_UNS)
 | ||
| 		fs.setIf(b&(1<<19) != 0, IBRS_PROVIDES_SMP)
 | ||
| 		fs.setIf(b&(1<<18) != 0, IBRS_PREFERRED)
 | ||
| 		fs.setIf(b&(1<<17) != 0, STIBP_ALWAYSON)
 | ||
| 		fs.setIf(b&(1<<15) != 0, STIBP)
 | ||
| 		fs.setIf(b&(1<<14) != 0, IBRS)
 | ||
| 		fs.setIf((b&(1<<13)) != 0, INT_WBINVD)
 | ||
| 		fs.setIf(b&(1<<12) != 0, IBPB)
 | ||
| 		fs.setIf((b&(1<<9)) != 0, WBNOINVD)
 | ||
| 		fs.setIf((b&(1<<8)) != 0, MCOMMIT)
 | ||
| 		fs.setIf((b&(1<<4)) != 0, RDPRU)
 | ||
| 		fs.setIf((b&(1<<3)) != 0, INVLPGB)
 | ||
| 		fs.setIf((b&(1<<1)) != 0, MSRIRC)
 | ||
| 		fs.setIf((b&(1<<0)) != 0, CLZERO)
 | ||
| 	}
 | ||
| 
 | ||
| 	if fs.inSet(SVM) && maxExtendedFunction() >= 0x8000000A {
 | ||
| 		_, _, _, edx := cpuid(0x8000000A)
 | ||
| 		fs.setIf((edx>>0)&1 == 1, SVMNP)
 | ||
| 		fs.setIf((edx>>1)&1 == 1, LBRVIRT)
 | ||
| 		fs.setIf((edx>>2)&1 == 1, SVML)
 | ||
| 		fs.setIf((edx>>3)&1 == 1, NRIPS)
 | ||
| 		fs.setIf((edx>>4)&1 == 1, TSCRATEMSR)
 | ||
| 		fs.setIf((edx>>5)&1 == 1, VMCBCLEAN)
 | ||
| 		fs.setIf((edx>>6)&1 == 1, SVMFBASID)
 | ||
| 		fs.setIf((edx>>7)&1 == 1, SVMDA)
 | ||
| 		fs.setIf((edx>>10)&1 == 1, SVMPF)
 | ||
| 		fs.setIf((edx>>12)&1 == 1, SVMPFT)
 | ||
| 	}
 | ||
| 
 | ||
| 	if maxExtendedFunction() >= 0x8000001a {
 | ||
| 		eax, _, _, _ := cpuid(0x8000001a)
 | ||
| 		fs.setIf((eax>>0)&1 == 1, FP128)
 | ||
| 		fs.setIf((eax>>1)&1 == 1, MOVU)
 | ||
| 		fs.setIf((eax>>2)&1 == 1, FP256)
 | ||
| 	}
 | ||
| 
 | ||
| 	if maxExtendedFunction() >= 0x8000001b && fs.inSet(IBS) {
 | ||
| 		eax, _, _, _ := cpuid(0x8000001b)
 | ||
| 		fs.setIf((eax>>0)&1 == 1, IBSFFV)
 | ||
| 		fs.setIf((eax>>1)&1 == 1, IBSFETCHSAM)
 | ||
| 		fs.setIf((eax>>2)&1 == 1, IBSOPSAM)
 | ||
| 		fs.setIf((eax>>3)&1 == 1, IBSRDWROPCNT)
 | ||
| 		fs.setIf((eax>>4)&1 == 1, IBSOPCNT)
 | ||
| 		fs.setIf((eax>>5)&1 == 1, IBSBRNTRGT)
 | ||
| 		fs.setIf((eax>>6)&1 == 1, IBSOPCNTEXT)
 | ||
| 		fs.setIf((eax>>7)&1 == 1, IBSRIPINVALIDCHK)
 | ||
| 		fs.setIf((eax>>8)&1 == 1, IBS_OPFUSE)
 | ||
| 		fs.setIf((eax>>9)&1 == 1, IBS_FETCH_CTLX)
 | ||
| 		fs.setIf((eax>>10)&1 == 1, IBS_OPDATA4) // Doc says "Fixed,0. IBS op data 4 MSR supported", but assuming they mean 1.
 | ||
| 		fs.setIf((eax>>11)&1 == 1, IBS_ZEN4)
 | ||
| 	}
 | ||
| 
 | ||
| 	if maxExtendedFunction() >= 0x8000001f && vend == AMD {
 | ||
| 		a, _, _, _ := cpuid(0x8000001f)
 | ||
| 		fs.setIf((a>>0)&1 == 1, SME)
 | ||
| 		fs.setIf((a>>1)&1 == 1, SEV)
 | ||
| 		fs.setIf((a>>2)&1 == 1, MSR_PAGEFLUSH)
 | ||
| 		fs.setIf((a>>3)&1 == 1, SEV_ES)
 | ||
| 		fs.setIf((a>>4)&1 == 1, SEV_SNP)
 | ||
| 		fs.setIf((a>>5)&1 == 1, VMPL)
 | ||
| 		fs.setIf((a>>10)&1 == 1, SME_COHERENT)
 | ||
| 		fs.setIf((a>>11)&1 == 1, SEV_64BIT)
 | ||
| 		fs.setIf((a>>12)&1 == 1, SEV_RESTRICTED)
 | ||
| 		fs.setIf((a>>13)&1 == 1, SEV_ALTERNATIVE)
 | ||
| 		fs.setIf((a>>14)&1 == 1, SEV_DEBUGSWAP)
 | ||
| 		fs.setIf((a>>15)&1 == 1, IBS_PREVENTHOST)
 | ||
| 		fs.setIf((a>>16)&1 == 1, VTE)
 | ||
| 		fs.setIf((a>>24)&1 == 1, VMSA_REGPROT)
 | ||
| 	}
 | ||
| 
 | ||
| 	return fs
 | ||
| }
 | ||
| 
 | ||
| func valAsString(values ...uint32) []byte {
 | ||
| 	r := make([]byte, 4*len(values))
 | ||
| 	for i, v := range values {
 | ||
| 		dst := r[i*4:]
 | ||
| 		dst[0] = byte(v & 0xff)
 | ||
| 		dst[1] = byte((v >> 8) & 0xff)
 | ||
| 		dst[2] = byte((v >> 16) & 0xff)
 | ||
| 		dst[3] = byte((v >> 24) & 0xff)
 | ||
| 		switch {
 | ||
| 		case dst[0] == 0:
 | ||
| 			return r[:i*4]
 | ||
| 		case dst[1] == 0:
 | ||
| 			return r[:i*4+1]
 | ||
| 		case dst[2] == 0:
 | ||
| 			return r[:i*4+2]
 | ||
| 		case dst[3] == 0:
 | ||
| 			return r[:i*4+3]
 | ||
| 		}
 | ||
| 	}
 | ||
| 	return r
 | ||
| }
 |