2377 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			2377 lines
		
	
	
		
			67 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright (c) 2012-2020 Ugorji Nwoke. All rights reserved.
 | |
| // Use of this source code is governed by a MIT license found in the LICENSE file.
 | |
| 
 | |
| package codec
 | |
| 
 | |
| import (
 | |
| 	"encoding"
 | |
| 	"errors"
 | |
| 	"io"
 | |
| 	"math"
 | |
| 	"reflect"
 | |
| 	"strconv"
 | |
| 	"time"
 | |
| )
 | |
| 
 | |
| const msgBadDesc = "unrecognized descriptor byte"
 | |
| 
 | |
| const (
 | |
| 	decDefMaxDepth         = 1024                // maximum depth
 | |
| 	decDefChanCap          = 64                  // should be large, as cap cannot be expanded
 | |
| 	decScratchByteArrayLen = (8 + 2 + 2 + 1) * 8 // around cacheLineSize ie ~64, depending on Decoder size
 | |
| 
 | |
| 	// MARKER: massage decScratchByteArrayLen to ensure xxxDecDriver structs fit within cacheLine*N
 | |
| 
 | |
| 	// decFailNonEmptyIntf configures whether we error
 | |
| 	// when decoding naked into a non-empty interface.
 | |
| 	//
 | |
| 	// Typically, we cannot decode non-nil stream value into
 | |
| 	// nil interface with methods (e.g. io.Reader).
 | |
| 	// However, in some scenarios, this should be allowed:
 | |
| 	//   - MapType
 | |
| 	//   - SliceType
 | |
| 	//   - Extensions
 | |
| 	//
 | |
| 	// Consequently, we should relax this. Put it behind a const flag for now.
 | |
| 	decFailNonEmptyIntf = false
 | |
| 
 | |
| 	// decUseTransient says that we should not use the transient optimization.
 | |
| 	//
 | |
| 	// There's potential for GC corruption or memory overwrites if transient isn't
 | |
| 	// used carefully, so this flag helps turn it off quickly if needed.
 | |
| 	//
 | |
| 	// Use it everywhere needed so we can completely remove unused code blocks.
 | |
| 	decUseTransient = true
 | |
| )
 | |
| 
 | |
| var (
 | |
| 	errNeedMapOrArrayDecodeToStruct = errors.New("only encoded map or array can decode into struct")
 | |
| 	errCannotDecodeIntoNil          = errors.New("cannot decode into nil")
 | |
| 
 | |
| 	errExpandSliceCannotChange = errors.New("expand slice: cannot change")
 | |
| 
 | |
| 	errDecoderNotInitialized = errors.New("Decoder not initialized")
 | |
| 
 | |
| 	errDecUnreadByteNothingToRead   = errors.New("cannot unread - nothing has been read")
 | |
| 	errDecUnreadByteLastByteNotRead = errors.New("cannot unread - last byte has not been read")
 | |
| 	errDecUnreadByteUnknown         = errors.New("cannot unread - reason unknown")
 | |
| 	errMaxDepthExceeded             = errors.New("maximum decoding depth exceeded")
 | |
| )
 | |
| 
 | |
| // decByteState tracks where the []byte returned by the last call
 | |
| // to DecodeBytes or DecodeStringAsByte came from
 | |
| type decByteState uint8
 | |
| 
 | |
| const (
 | |
| 	decByteStateNone     decByteState = iota
 | |
| 	decByteStateZerocopy              // view into []byte that we are decoding from
 | |
| 	decByteStateReuseBuf              // view into transient buffer used internally by decDriver
 | |
| 	// decByteStateNewAlloc
 | |
| )
 | |
| 
 | |
| type decNotDecodeableReason uint8
 | |
| 
 | |
| const (
 | |
| 	decNotDecodeableReasonUnknown decNotDecodeableReason = iota
 | |
| 	decNotDecodeableReasonBadKind
 | |
| 	decNotDecodeableReasonNonAddrValue
 | |
| 	decNotDecodeableReasonNilReference
 | |
| )
 | |
| 
 | |
| type decDriver interface {
 | |
| 	// this will check if the next token is a break.
 | |
| 	CheckBreak() bool
 | |
| 
 | |
| 	// TryNil tries to decode as nil.
 | |
| 	// If a nil is in the stream, it consumes it and returns true.
 | |
| 	//
 | |
| 	// Note: if TryNil returns true, that must be handled.
 | |
| 	TryNil() bool
 | |
| 
 | |
| 	// ContainerType returns one of: Bytes, String, Nil, Slice or Map.
 | |
| 	//
 | |
| 	// Return unSet if not known.
 | |
| 	//
 | |
| 	// Note: Implementations MUST fully consume sentinel container types, specifically Nil.
 | |
| 	ContainerType() (vt valueType)
 | |
| 
 | |
| 	// DecodeNaked will decode primitives (number, bool, string, []byte) and RawExt.
 | |
| 	// For maps and arrays, it will not do the decoding in-band, but will signal
 | |
| 	// the decoder, so that is done later, by setting the fauxUnion.valueType field.
 | |
| 	//
 | |
| 	// Note: Numbers are decoded as int64, uint64, float64 only (no smaller sized number types).
 | |
| 	// for extensions, DecodeNaked must read the tag and the []byte if it exists.
 | |
| 	// if the []byte is not read, then kInterfaceNaked will treat it as a Handle
 | |
| 	// that stores the subsequent value in-band, and complete reading the RawExt.
 | |
| 	//
 | |
| 	// extensions should also use readx to decode them, for efficiency.
 | |
| 	// kInterface will extract the detached byte slice if it has to pass it outside its realm.
 | |
| 	DecodeNaked()
 | |
| 
 | |
| 	DecodeInt64() (i int64)
 | |
| 	DecodeUint64() (ui uint64)
 | |
| 
 | |
| 	DecodeFloat64() (f float64)
 | |
| 	DecodeBool() (b bool)
 | |
| 
 | |
| 	// DecodeStringAsBytes returns the bytes representing a string.
 | |
| 	// It will return a view into scratch buffer or input []byte (if applicable).
 | |
| 	//
 | |
| 	// Note: This can also decode symbols, if supported.
 | |
| 	//
 | |
| 	// Users should consume it right away and not store it for later use.
 | |
| 	DecodeStringAsBytes() (v []byte)
 | |
| 
 | |
| 	// DecodeBytes returns the bytes representing a binary value.
 | |
| 	// It will return a view into scratch buffer or input []byte (if applicable).
 | |
| 	//
 | |
| 	// All implementations must honor the contract below:
 | |
| 	//    if ZeroCopy and applicable, return a view into input []byte we are decoding from
 | |
| 	//    else if in == nil,          return a view into scratch buffer
 | |
| 	//    else                        append decoded value to in[:0] and return that
 | |
| 	//                                (this can be simulated by passing []byte{} as in parameter)
 | |
| 	//
 | |
| 	// Implementations must also update Decoder.decByteState on each call to
 | |
| 	// DecodeBytes or DecodeStringAsBytes. Some callers may check that and work appropriately.
 | |
| 	//
 | |
| 	// Note: DecodeBytes may decode past the length of the passed byte slice, up to the cap.
 | |
| 	// Consequently, it is ok to pass a zero-len slice to DecodeBytes, as the returned
 | |
| 	// byte slice will have the appropriate length.
 | |
| 	DecodeBytes(in []byte) (out []byte)
 | |
| 	// DecodeBytes(bs []byte, isstring, zerocopy bool) (bsOut []byte)
 | |
| 
 | |
| 	// DecodeExt will decode into a *RawExt or into an extension.
 | |
| 	DecodeExt(v interface{}, basetype reflect.Type, xtag uint64, ext Ext)
 | |
| 	// decodeExt(verifyTag bool, tag byte) (xtag byte, xbs []byte)
 | |
| 
 | |
| 	DecodeTime() (t time.Time)
 | |
| 
 | |
| 	// ReadArrayStart will return the length of the array.
 | |
| 	// If the format doesn't prefix the length, it returns containerLenUnknown.
 | |
| 	// If the expected array was a nil in the stream, it returns containerLenNil.
 | |
| 	ReadArrayStart() int
 | |
| 
 | |
| 	// ReadMapStart will return the length of the array.
 | |
| 	// If the format doesn't prefix the length, it returns containerLenUnknown.
 | |
| 	// If the expected array was a nil in the stream, it returns containerLenNil.
 | |
| 	ReadMapStart() int
 | |
| 
 | |
| 	reset()
 | |
| 
 | |
| 	// atEndOfDecode()
 | |
| 
 | |
| 	// nextValueBytes will return the bytes representing the next value in the stream.
 | |
| 	//
 | |
| 	// if start is nil, then treat it as a request to discard the next set of bytes,
 | |
| 	// and the return response does not matter.
 | |
| 	// Typically, this means that the returned []byte is nil/empty/undefined.
 | |
| 	//
 | |
| 	// Optimize for decoding from a []byte, where the nextValueBytes will just be a sub-slice
 | |
| 	// of the input slice. Callers that need to use this to not be a view into the input bytes
 | |
| 	// should handle it appropriately.
 | |
| 	nextValueBytes(start []byte) []byte
 | |
| 
 | |
| 	// descBd will describe the token descriptor that signifies what type was decoded
 | |
| 	descBd() string
 | |
| 
 | |
| 	decoder() *Decoder
 | |
| 
 | |
| 	driverStateManager
 | |
| 	decNegintPosintFloatNumber
 | |
| }
 | |
| 
 | |
| type decDriverContainerTracker interface {
 | |
| 	ReadArrayElem()
 | |
| 	ReadMapElemKey()
 | |
| 	ReadMapElemValue()
 | |
| 	ReadArrayEnd()
 | |
| 	ReadMapEnd()
 | |
| }
 | |
| 
 | |
| type decNegintPosintFloatNumber interface {
 | |
| 	decInteger() (ui uint64, neg, ok bool)
 | |
| 	decFloat() (f float64, ok bool)
 | |
| }
 | |
| 
 | |
| type decDriverNoopNumberHelper struct{}
 | |
| 
 | |
| func (x decDriverNoopNumberHelper) decInteger() (ui uint64, neg, ok bool) {
 | |
| 	panic("decInteger unsupported")
 | |
| }
 | |
| func (x decDriverNoopNumberHelper) decFloat() (f float64, ok bool) { panic("decFloat unsupported") }
 | |
| 
 | |
| type decDriverNoopContainerReader struct{}
 | |
| 
 | |
| // func (x decDriverNoopContainerReader) ReadArrayStart() (v int) { panic("ReadArrayStart unsupported") }
 | |
| // func (x decDriverNoopContainerReader) ReadMapStart() (v int)   { panic("ReadMapStart unsupported") }
 | |
| func (x decDriverNoopContainerReader) ReadArrayEnd()        {}
 | |
| func (x decDriverNoopContainerReader) ReadMapEnd()          {}
 | |
| func (x decDriverNoopContainerReader) CheckBreak() (v bool) { return }
 | |
| 
 | |
| // DecodeOptions captures configuration options during decode.
 | |
| type DecodeOptions struct {
 | |
| 	// MapType specifies type to use during schema-less decoding of a map in the stream.
 | |
| 	// If nil (unset), we default to map[string]interface{} iff json handle and MapKeyAsString=true,
 | |
| 	// else map[interface{}]interface{}.
 | |
| 	MapType reflect.Type
 | |
| 
 | |
| 	// SliceType specifies type to use during schema-less decoding of an array in the stream.
 | |
| 	// If nil (unset), we default to []interface{} for all formats.
 | |
| 	SliceType reflect.Type
 | |
| 
 | |
| 	// MaxInitLen defines the maxinum initial length that we "make" a collection
 | |
| 	// (string, slice, map, chan). If 0 or negative, we default to a sensible value
 | |
| 	// based on the size of an element in the collection.
 | |
| 	//
 | |
| 	// For example, when decoding, a stream may say that it has 2^64 elements.
 | |
| 	// We should not auto-matically provision a slice of that size, to prevent Out-Of-Memory crash.
 | |
| 	// Instead, we provision up to MaxInitLen, fill that up, and start appending after that.
 | |
| 	MaxInitLen int
 | |
| 
 | |
| 	// ReaderBufferSize is the size of the buffer used when reading.
 | |
| 	//
 | |
| 	// if > 0, we use a smart buffer internally for performance purposes.
 | |
| 	ReaderBufferSize int
 | |
| 
 | |
| 	// MaxDepth defines the maximum depth when decoding nested
 | |
| 	// maps and slices. If 0 or negative, we default to a suitably large number (currently 1024).
 | |
| 	MaxDepth int16
 | |
| 
 | |
| 	// If ErrorIfNoField, return an error when decoding a map
 | |
| 	// from a codec stream into a struct, and no matching struct field is found.
 | |
| 	ErrorIfNoField bool
 | |
| 
 | |
| 	// If ErrorIfNoArrayExpand, return an error when decoding a slice/array that cannot be expanded.
 | |
| 	// For example, the stream contains an array of 8 items, but you are decoding into a [4]T array,
 | |
| 	// or you are decoding into a slice of length 4 which is non-addressable (and so cannot be set).
 | |
| 	ErrorIfNoArrayExpand bool
 | |
| 
 | |
| 	// If SignedInteger, use the int64 during schema-less decoding of unsigned values (not uint64).
 | |
| 	SignedInteger bool
 | |
| 
 | |
| 	// MapValueReset controls how we decode into a map value.
 | |
| 	//
 | |
| 	// By default, we MAY retrieve the mapping for a key, and then decode into that.
 | |
| 	// However, especially with big maps, that retrieval may be expensive and unnecessary
 | |
| 	// if the stream already contains all that is necessary to recreate the value.
 | |
| 	//
 | |
| 	// If true, we will never retrieve the previous mapping,
 | |
| 	// but rather decode into a new value and set that in the map.
 | |
| 	//
 | |
| 	// If false, we will retrieve the previous mapping if necessary e.g.
 | |
| 	// the previous mapping is a pointer, or is a struct or array with pre-set state,
 | |
| 	// or is an interface.
 | |
| 	MapValueReset bool
 | |
| 
 | |
| 	// SliceElementReset: on decoding a slice, reset the element to a zero value first.
 | |
| 	//
 | |
| 	// concern: if the slice already contained some garbage, we will decode into that garbage.
 | |
| 	SliceElementReset bool
 | |
| 
 | |
| 	// InterfaceReset controls how we decode into an interface.
 | |
| 	//
 | |
| 	// By default, when we see a field that is an interface{...},
 | |
| 	// or a map with interface{...} value, we will attempt decoding into the
 | |
| 	// "contained" value.
 | |
| 	//
 | |
| 	// However, this prevents us from reading a string into an interface{}
 | |
| 	// that formerly contained a number.
 | |
| 	//
 | |
| 	// If true, we will decode into a new "blank" value, and set that in the interface.
 | |
| 	// If false, we will decode into whatever is contained in the interface.
 | |
| 	InterfaceReset bool
 | |
| 
 | |
| 	// InternString controls interning of strings during decoding.
 | |
| 	//
 | |
| 	// Some handles, e.g. json, typically will read map keys as strings.
 | |
| 	// If the set of keys are finite, it may help reduce allocation to
 | |
| 	// look them up from a map (than to allocate them afresh).
 | |
| 	//
 | |
| 	// Note: Handles will be smart when using the intern functionality.
 | |
| 	// Every string should not be interned.
 | |
| 	// An excellent use-case for interning is struct field names,
 | |
| 	// or map keys where key type is string.
 | |
| 	InternString bool
 | |
| 
 | |
| 	// PreferArrayOverSlice controls whether to decode to an array or a slice.
 | |
| 	//
 | |
| 	// This only impacts decoding into a nil interface{}.
 | |
| 	//
 | |
| 	// Consequently, it has no effect on codecgen.
 | |
| 	//
 | |
| 	// *Note*: This only applies if using go1.5 and above,
 | |
| 	// as it requires reflect.ArrayOf support which was absent before go1.5.
 | |
| 	PreferArrayOverSlice bool
 | |
| 
 | |
| 	// DeleteOnNilMapValue controls how to decode a nil value in the stream.
 | |
| 	//
 | |
| 	// If true, we will delete the mapping of the key.
 | |
| 	// Else, just set the mapping to the zero value of the type.
 | |
| 	//
 | |
| 	// Deprecated: This does NOTHING and is left behind for compiling compatibility.
 | |
| 	// This change is necessitated because 'nil' in a stream now consistently
 | |
| 	// means the zero value (ie reset the value to its zero state).
 | |
| 	DeleteOnNilMapValue bool
 | |
| 
 | |
| 	// RawToString controls how raw bytes in a stream are decoded into a nil interface{}.
 | |
| 	// By default, they are decoded as []byte, but can be decoded as string (if configured).
 | |
| 	RawToString bool
 | |
| 
 | |
| 	// ZeroCopy controls whether decoded values of []byte or string type
 | |
| 	// point into the input []byte parameter passed to a NewDecoderBytes/ResetBytes(...) call.
 | |
| 	//
 | |
| 	// To illustrate, if ZeroCopy and decoding from a []byte (not io.Writer),
 | |
| 	// then a []byte or string in the output result may just be a slice of (point into)
 | |
| 	// the input bytes.
 | |
| 	//
 | |
| 	// This optimization prevents unnecessary copying.
 | |
| 	//
 | |
| 	// However, it is made optional, as the caller MUST ensure that the input parameter []byte is
 | |
| 	// not modified after the Decode() happens, as any changes are mirrored in the decoded result.
 | |
| 	ZeroCopy bool
 | |
| 
 | |
| 	// PreferPointerForStructOrArray controls whether a struct or array
 | |
| 	// is stored in a nil interface{}, or a pointer to it.
 | |
| 	//
 | |
| 	// This mostly impacts when we decode registered extensions.
 | |
| 	PreferPointerForStructOrArray bool
 | |
| 
 | |
| 	// ValidateUnicode controls will cause decoding to fail if an expected unicode
 | |
| 	// string is well-formed but include invalid codepoints.
 | |
| 	//
 | |
| 	// This could have a performance impact.
 | |
| 	ValidateUnicode bool
 | |
| }
 | |
| 
 | |
| // ----------------------------------------
 | |
| 
 | |
| func (d *Decoder) rawExt(f *codecFnInfo, rv reflect.Value) {
 | |
| 	d.d.DecodeExt(rv2i(rv), f.ti.rt, 0, nil)
 | |
| }
 | |
| 
 | |
| func (d *Decoder) ext(f *codecFnInfo, rv reflect.Value) {
 | |
| 	d.d.DecodeExt(rv2i(rv), f.ti.rt, f.xfTag, f.xfFn)
 | |
| }
 | |
| 
 | |
| func (d *Decoder) selferUnmarshal(f *codecFnInfo, rv reflect.Value) {
 | |
| 	rv2i(rv).(Selfer).CodecDecodeSelf(d)
 | |
| }
 | |
| 
 | |
| func (d *Decoder) binaryUnmarshal(f *codecFnInfo, rv reflect.Value) {
 | |
| 	bm := rv2i(rv).(encoding.BinaryUnmarshaler)
 | |
| 	xbs := d.d.DecodeBytes(nil)
 | |
| 	fnerr := bm.UnmarshalBinary(xbs)
 | |
| 	d.onerror(fnerr)
 | |
| }
 | |
| 
 | |
| func (d *Decoder) textUnmarshal(f *codecFnInfo, rv reflect.Value) {
 | |
| 	tm := rv2i(rv).(encoding.TextUnmarshaler)
 | |
| 	fnerr := tm.UnmarshalText(d.d.DecodeStringAsBytes())
 | |
| 	d.onerror(fnerr)
 | |
| }
 | |
| 
 | |
| func (d *Decoder) jsonUnmarshal(f *codecFnInfo, rv reflect.Value) {
 | |
| 	d.jsonUnmarshalV(rv2i(rv).(jsonUnmarshaler))
 | |
| }
 | |
| 
 | |
| func (d *Decoder) jsonUnmarshalV(tm jsonUnmarshaler) {
 | |
| 	// grab the bytes to be read, as UnmarshalJSON needs the full JSON so as to unmarshal it itself.
 | |
| 	var bs0 = []byte{}
 | |
| 	if !d.bytes {
 | |
| 		bs0 = d.blist.get(256)
 | |
| 	}
 | |
| 	bs := d.d.nextValueBytes(bs0)
 | |
| 	fnerr := tm.UnmarshalJSON(bs)
 | |
| 	if !d.bytes {
 | |
| 		d.blist.put(bs)
 | |
| 		if !byteSliceSameData(bs0, bs) {
 | |
| 			d.blist.put(bs0)
 | |
| 		}
 | |
| 	}
 | |
| 	d.onerror(fnerr)
 | |
| }
 | |
| 
 | |
| func (d *Decoder) kErr(f *codecFnInfo, rv reflect.Value) {
 | |
| 	d.errorf("no decoding function defined for kind %v", rv.Kind())
 | |
| }
 | |
| 
 | |
| func (d *Decoder) raw(f *codecFnInfo, rv reflect.Value) {
 | |
| 	rvSetBytes(rv, d.rawBytes())
 | |
| }
 | |
| 
 | |
| func (d *Decoder) kString(f *codecFnInfo, rv reflect.Value) {
 | |
| 	rvSetString(rv, d.stringZC(d.d.DecodeStringAsBytes()))
 | |
| }
 | |
| 
 | |
| func (d *Decoder) kBool(f *codecFnInfo, rv reflect.Value) {
 | |
| 	rvSetBool(rv, d.d.DecodeBool())
 | |
| }
 | |
| 
 | |
| func (d *Decoder) kTime(f *codecFnInfo, rv reflect.Value) {
 | |
| 	rvSetTime(rv, d.d.DecodeTime())
 | |
| }
 | |
| 
 | |
| func (d *Decoder) kFloat32(f *codecFnInfo, rv reflect.Value) {
 | |
| 	rvSetFloat32(rv, d.decodeFloat32())
 | |
| }
 | |
| 
 | |
| func (d *Decoder) kFloat64(f *codecFnInfo, rv reflect.Value) {
 | |
| 	rvSetFloat64(rv, d.d.DecodeFloat64())
 | |
| }
 | |
| 
 | |
| func (d *Decoder) kComplex64(f *codecFnInfo, rv reflect.Value) {
 | |
| 	rvSetComplex64(rv, complex(d.decodeFloat32(), 0))
 | |
| }
 | |
| 
 | |
| func (d *Decoder) kComplex128(f *codecFnInfo, rv reflect.Value) {
 | |
| 	rvSetComplex128(rv, complex(d.d.DecodeFloat64(), 0))
 | |
| }
 | |
| 
 | |
| func (d *Decoder) kInt(f *codecFnInfo, rv reflect.Value) {
 | |
| 	rvSetInt(rv, int(chkOvf.IntV(d.d.DecodeInt64(), intBitsize)))
 | |
| }
 | |
| 
 | |
| func (d *Decoder) kInt8(f *codecFnInfo, rv reflect.Value) {
 | |
| 	rvSetInt8(rv, int8(chkOvf.IntV(d.d.DecodeInt64(), 8)))
 | |
| }
 | |
| 
 | |
| func (d *Decoder) kInt16(f *codecFnInfo, rv reflect.Value) {
 | |
| 	rvSetInt16(rv, int16(chkOvf.IntV(d.d.DecodeInt64(), 16)))
 | |
| }
 | |
| 
 | |
| func (d *Decoder) kInt32(f *codecFnInfo, rv reflect.Value) {
 | |
| 	rvSetInt32(rv, int32(chkOvf.IntV(d.d.DecodeInt64(), 32)))
 | |
| }
 | |
| 
 | |
| func (d *Decoder) kInt64(f *codecFnInfo, rv reflect.Value) {
 | |
| 	rvSetInt64(rv, d.d.DecodeInt64())
 | |
| }
 | |
| 
 | |
| func (d *Decoder) kUint(f *codecFnInfo, rv reflect.Value) {
 | |
| 	rvSetUint(rv, uint(chkOvf.UintV(d.d.DecodeUint64(), uintBitsize)))
 | |
| }
 | |
| 
 | |
| func (d *Decoder) kUintptr(f *codecFnInfo, rv reflect.Value) {
 | |
| 	rvSetUintptr(rv, uintptr(chkOvf.UintV(d.d.DecodeUint64(), uintBitsize)))
 | |
| }
 | |
| 
 | |
| func (d *Decoder) kUint8(f *codecFnInfo, rv reflect.Value) {
 | |
| 	rvSetUint8(rv, uint8(chkOvf.UintV(d.d.DecodeUint64(), 8)))
 | |
| }
 | |
| 
 | |
| func (d *Decoder) kUint16(f *codecFnInfo, rv reflect.Value) {
 | |
| 	rvSetUint16(rv, uint16(chkOvf.UintV(d.d.DecodeUint64(), 16)))
 | |
| }
 | |
| 
 | |
| func (d *Decoder) kUint32(f *codecFnInfo, rv reflect.Value) {
 | |
| 	rvSetUint32(rv, uint32(chkOvf.UintV(d.d.DecodeUint64(), 32)))
 | |
| }
 | |
| 
 | |
| func (d *Decoder) kUint64(f *codecFnInfo, rv reflect.Value) {
 | |
| 	rvSetUint64(rv, d.d.DecodeUint64())
 | |
| }
 | |
| 
 | |
| func (d *Decoder) kInterfaceNaked(f *codecFnInfo) (rvn reflect.Value) {
 | |
| 	// nil interface:
 | |
| 	// use some hieristics to decode it appropriately
 | |
| 	// based on the detected next value in the stream.
 | |
| 	n := d.naked()
 | |
| 	d.d.DecodeNaked()
 | |
| 
 | |
| 	// We cannot decode non-nil stream value into nil interface with methods (e.g. io.Reader).
 | |
| 	// Howver, it is possible that the user has ways to pass in a type for a given interface
 | |
| 	//   - MapType
 | |
| 	//   - SliceType
 | |
| 	//   - Extensions
 | |
| 	//
 | |
| 	// Consequently, we should relax this. Put it behind a const flag for now.
 | |
| 	if decFailNonEmptyIntf && f.ti.numMeth > 0 {
 | |
| 		d.errorf("cannot decode non-nil codec value into nil %v (%v methods)", f.ti.rt, f.ti.numMeth)
 | |
| 	}
 | |
| 	switch n.v {
 | |
| 	case valueTypeMap:
 | |
| 		mtid := d.mtid
 | |
| 		if mtid == 0 {
 | |
| 			if d.jsms { // if json, default to a map type with string keys
 | |
| 				mtid = mapStrIntfTypId // for json performance
 | |
| 			} else {
 | |
| 				mtid = mapIntfIntfTypId
 | |
| 			}
 | |
| 		}
 | |
| 		if mtid == mapStrIntfTypId {
 | |
| 			var v2 map[string]interface{}
 | |
| 			d.decode(&v2)
 | |
| 			rvn = rv4iptr(&v2).Elem()
 | |
| 		} else if mtid == mapIntfIntfTypId {
 | |
| 			var v2 map[interface{}]interface{}
 | |
| 			d.decode(&v2)
 | |
| 			rvn = rv4iptr(&v2).Elem()
 | |
| 		} else if d.mtr {
 | |
| 			rvn = reflect.New(d.h.MapType)
 | |
| 			d.decode(rv2i(rvn))
 | |
| 			rvn = rvn.Elem()
 | |
| 		} else {
 | |
| 			rvn = rvZeroAddrK(d.h.MapType, reflect.Map)
 | |
| 			d.decodeValue(rvn, nil)
 | |
| 		}
 | |
| 	case valueTypeArray:
 | |
| 		if d.stid == 0 || d.stid == intfSliceTypId {
 | |
| 			var v2 []interface{}
 | |
| 			d.decode(&v2)
 | |
| 			rvn = rv4iptr(&v2).Elem()
 | |
| 		} else if d.str {
 | |
| 			rvn = reflect.New(d.h.SliceType)
 | |
| 			d.decode(rv2i(rvn))
 | |
| 			rvn = rvn.Elem()
 | |
| 		} else {
 | |
| 			rvn = rvZeroAddrK(d.h.SliceType, reflect.Slice)
 | |
| 			d.decodeValue(rvn, nil)
 | |
| 		}
 | |
| 		if reflectArrayOfSupported && d.h.PreferArrayOverSlice {
 | |
| 			rvn = rvGetArray4Slice(rvn)
 | |
| 		}
 | |
| 	case valueTypeExt:
 | |
| 		tag, bytes := n.u, n.l // calling decode below might taint the values
 | |
| 		bfn := d.h.getExtForTag(tag)
 | |
| 		var re = RawExt{Tag: tag}
 | |
| 		if bytes == nil {
 | |
| 			// it is one of the InterfaceExt ones: json and cbor.
 | |
| 			// most likely cbor, as json decoding never reveals valueTypeExt (no tagging support)
 | |
| 			if bfn == nil {
 | |
| 				d.decode(&re.Value)
 | |
| 				rvn = rv4iptr(&re).Elem()
 | |
| 			} else {
 | |
| 				if bfn.ext == SelfExt {
 | |
| 					rvn = rvZeroAddrK(bfn.rt, bfn.rt.Kind())
 | |
| 					d.decodeValue(rvn, d.h.fnNoExt(bfn.rt))
 | |
| 				} else {
 | |
| 					rvn = reflect.New(bfn.rt)
 | |
| 					d.interfaceExtConvertAndDecode(rv2i(rvn), bfn.ext)
 | |
| 					rvn = rvn.Elem()
 | |
| 				}
 | |
| 			}
 | |
| 		} else {
 | |
| 			// one of the BytesExt ones: binc, msgpack, simple
 | |
| 			if bfn == nil {
 | |
| 				re.setData(bytes, false)
 | |
| 				rvn = rv4iptr(&re).Elem()
 | |
| 			} else {
 | |
| 				rvn = reflect.New(bfn.rt)
 | |
| 				if bfn.ext == SelfExt {
 | |
| 					d.sideDecode(rv2i(rvn), bfn.rt, bytes)
 | |
| 				} else {
 | |
| 					bfn.ext.ReadExt(rv2i(rvn), bytes)
 | |
| 				}
 | |
| 				rvn = rvn.Elem()
 | |
| 			}
 | |
| 		}
 | |
| 		// if struct/array, directly store pointer into the interface
 | |
| 		if d.h.PreferPointerForStructOrArray && rvn.CanAddr() {
 | |
| 			if rk := rvn.Kind(); rk == reflect.Array || rk == reflect.Struct {
 | |
| 				rvn = rvn.Addr()
 | |
| 			}
 | |
| 		}
 | |
| 	case valueTypeNil:
 | |
| 		// rvn = reflect.Zero(f.ti.rt)
 | |
| 		// no-op
 | |
| 	case valueTypeInt:
 | |
| 		rvn = n.ri()
 | |
| 	case valueTypeUint:
 | |
| 		rvn = n.ru()
 | |
| 	case valueTypeFloat:
 | |
| 		rvn = n.rf()
 | |
| 	case valueTypeBool:
 | |
| 		rvn = n.rb()
 | |
| 	case valueTypeString, valueTypeSymbol:
 | |
| 		rvn = n.rs()
 | |
| 	case valueTypeBytes:
 | |
| 		rvn = n.rl()
 | |
| 	case valueTypeTime:
 | |
| 		rvn = n.rt()
 | |
| 	default:
 | |
| 		halt.errorf("kInterfaceNaked: unexpected valueType: %d", n.v)
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (d *Decoder) kInterface(f *codecFnInfo, rv reflect.Value) {
 | |
| 	// Note: A consequence of how kInterface works, is that
 | |
| 	// if an interface already contains something, we try
 | |
| 	// to decode into what was there before.
 | |
| 	// We do not replace with a generic value (as got from decodeNaked).
 | |
| 	//
 | |
| 	// every interface passed here MUST be settable.
 | |
| 	//
 | |
| 	// ensure you call rvSetIntf(...) before returning.
 | |
| 
 | |
| 	isnilrv := rvIsNil(rv)
 | |
| 
 | |
| 	var rvn reflect.Value
 | |
| 
 | |
| 	if d.h.InterfaceReset {
 | |
| 		// check if mapping to a type: if so, initialize it and move on
 | |
| 		rvn = d.h.intf2impl(f.ti.rtid)
 | |
| 		if !rvn.IsValid() {
 | |
| 			rvn = d.kInterfaceNaked(f)
 | |
| 			if rvn.IsValid() {
 | |
| 				rvSetIntf(rv, rvn)
 | |
| 			} else if !isnilrv {
 | |
| 				decSetNonNilRV2Zero4Intf(rv)
 | |
| 			}
 | |
| 			return
 | |
| 		}
 | |
| 	} else if isnilrv {
 | |
| 		// check if mapping to a type: if so, initialize it and move on
 | |
| 		rvn = d.h.intf2impl(f.ti.rtid)
 | |
| 		if !rvn.IsValid() {
 | |
| 			rvn = d.kInterfaceNaked(f)
 | |
| 			if rvn.IsValid() {
 | |
| 				rvSetIntf(rv, rvn)
 | |
| 			}
 | |
| 			return
 | |
| 		}
 | |
| 	} else {
 | |
| 		// now we have a non-nil interface value, meaning it contains a type
 | |
| 		rvn = rv.Elem()
 | |
| 	}
 | |
| 
 | |
| 	// rvn is now a non-interface type
 | |
| 
 | |
| 	canDecode, _ := isDecodeable(rvn)
 | |
| 
 | |
| 	// Note: interface{} is settable, but underlying type may not be.
 | |
| 	// Consequently, we MAY have to allocate a value (containing the underlying value),
 | |
| 	// decode into it, and reset the interface to that new value.
 | |
| 
 | |
| 	if !canDecode {
 | |
| 		rvn2 := d.oneShotAddrRV(rvn.Type(), rvn.Kind())
 | |
| 		rvSetDirect(rvn2, rvn)
 | |
| 		rvn = rvn2
 | |
| 	}
 | |
| 
 | |
| 	d.decodeValue(rvn, nil)
 | |
| 	rvSetIntf(rv, rvn)
 | |
| }
 | |
| 
 | |
| func decStructFieldKeyNotString(dd decDriver, keyType valueType, b *[decScratchByteArrayLen]byte) (rvkencname []byte) {
 | |
| 	if keyType == valueTypeInt {
 | |
| 		rvkencname = strconv.AppendInt(b[:0], dd.DecodeInt64(), 10)
 | |
| 	} else if keyType == valueTypeUint {
 | |
| 		rvkencname = strconv.AppendUint(b[:0], dd.DecodeUint64(), 10)
 | |
| 	} else if keyType == valueTypeFloat {
 | |
| 		rvkencname = strconv.AppendFloat(b[:0], dd.DecodeFloat64(), 'f', -1, 64)
 | |
| 	} else {
 | |
| 		halt.errorf("invalid struct key type: %v", keyType)
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (d *Decoder) kStructField(si *structFieldInfo, rv reflect.Value) {
 | |
| 	if d.d.TryNil() {
 | |
| 		if rv = si.path.field(rv); rv.IsValid() {
 | |
| 			decSetNonNilRV2Zero(rv)
 | |
| 		}
 | |
| 		return
 | |
| 	}
 | |
| 	d.decodeValueNoCheckNil(si.path.fieldAlloc(rv), nil)
 | |
| }
 | |
| 
 | |
| func (d *Decoder) kStruct(f *codecFnInfo, rv reflect.Value) {
 | |
| 	ctyp := d.d.ContainerType()
 | |
| 	ti := f.ti
 | |
| 	var mf MissingFielder
 | |
| 	if ti.flagMissingFielder {
 | |
| 		mf = rv2i(rv).(MissingFielder)
 | |
| 	} else if ti.flagMissingFielderPtr {
 | |
| 		mf = rv2i(rvAddr(rv, ti.ptr)).(MissingFielder)
 | |
| 	}
 | |
| 	if ctyp == valueTypeMap {
 | |
| 		containerLen := d.mapStart(d.d.ReadMapStart())
 | |
| 		if containerLen == 0 {
 | |
| 			d.mapEnd()
 | |
| 			return
 | |
| 		}
 | |
| 		hasLen := containerLen >= 0
 | |
| 		var name2 []byte
 | |
| 		if mf != nil {
 | |
| 			var namearr2 [16]byte
 | |
| 			name2 = namearr2[:0]
 | |
| 		}
 | |
| 		var rvkencname []byte
 | |
| 		for j := 0; d.containerNext(j, containerLen, hasLen); j++ {
 | |
| 			d.mapElemKey()
 | |
| 			if ti.keyType == valueTypeString {
 | |
| 				rvkencname = d.d.DecodeStringAsBytes()
 | |
| 			} else {
 | |
| 				rvkencname = decStructFieldKeyNotString(d.d, ti.keyType, &d.b)
 | |
| 			}
 | |
| 			d.mapElemValue()
 | |
| 			if si := ti.siForEncName(rvkencname); si != nil {
 | |
| 				d.kStructField(si, rv)
 | |
| 			} else if mf != nil {
 | |
| 				// store rvkencname in new []byte, as it previously shares Decoder.b, which is used in decode
 | |
| 				name2 = append(name2[:0], rvkencname...)
 | |
| 				var f interface{}
 | |
| 				d.decode(&f)
 | |
| 				if !mf.CodecMissingField(name2, f) && d.h.ErrorIfNoField {
 | |
| 					d.errorf("no matching struct field when decoding stream map with key: %s ", stringView(name2))
 | |
| 				}
 | |
| 			} else {
 | |
| 				d.structFieldNotFound(-1, stringView(rvkencname))
 | |
| 			}
 | |
| 		}
 | |
| 		d.mapEnd()
 | |
| 	} else if ctyp == valueTypeArray {
 | |
| 		containerLen := d.arrayStart(d.d.ReadArrayStart())
 | |
| 		if containerLen == 0 {
 | |
| 			d.arrayEnd()
 | |
| 			return
 | |
| 		}
 | |
| 		// Not much gain from doing it two ways for array.
 | |
| 		// Arrays are not used as much for structs.
 | |
| 		tisfi := ti.sfi.source()
 | |
| 		hasLen := containerLen >= 0
 | |
| 
 | |
| 		// iterate all the items in the stream
 | |
| 		// if mapped elem-wise to a field, handle it
 | |
| 		// if more stream items than can be mapped, error it
 | |
| 		for j := 0; d.containerNext(j, containerLen, hasLen); j++ {
 | |
| 			d.arrayElem()
 | |
| 			if j < len(tisfi) {
 | |
| 				d.kStructField(tisfi[j], rv)
 | |
| 			} else {
 | |
| 				d.structFieldNotFound(j, "")
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		d.arrayEnd()
 | |
| 	} else {
 | |
| 		d.onerror(errNeedMapOrArrayDecodeToStruct)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (d *Decoder) kSlice(f *codecFnInfo, rv reflect.Value) {
 | |
| 	// A slice can be set from a map or array in stream.
 | |
| 	// This way, the order can be kept (as order is lost with map).
 | |
| 
 | |
| 	// Note: rv is a slice type here - guaranteed
 | |
| 
 | |
| 	ti := f.ti
 | |
| 	rvCanset := rv.CanSet()
 | |
| 
 | |
| 	ctyp := d.d.ContainerType()
 | |
| 	if ctyp == valueTypeBytes || ctyp == valueTypeString {
 | |
| 		// you can only decode bytes or string in the stream into a slice or array of bytes
 | |
| 		if !(ti.rtid == uint8SliceTypId || ti.elemkind == uint8(reflect.Uint8)) {
 | |
| 			d.errorf("bytes/string in stream must decode into slice/array of bytes, not %v", ti.rt)
 | |
| 		}
 | |
| 		rvbs := rvGetBytes(rv)
 | |
| 		if !rvCanset {
 | |
| 			// not addressable byte slice, so do not decode into it past the length
 | |
| 			rvbs = rvbs[:len(rvbs):len(rvbs)]
 | |
| 		}
 | |
| 		bs2 := d.decodeBytesInto(rvbs)
 | |
| 		// if !(len(bs2) == len(rvbs) && byteSliceSameData(rvbs, bs2)) {
 | |
| 		if !(len(bs2) > 0 && len(bs2) == len(rvbs) && &bs2[0] == &rvbs[0]) {
 | |
| 			if rvCanset {
 | |
| 				rvSetBytes(rv, bs2)
 | |
| 			} else if len(rvbs) > 0 && len(bs2) > 0 {
 | |
| 				copy(rvbs, bs2)
 | |
| 			}
 | |
| 		}
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	slh, containerLenS := d.decSliceHelperStart() // only expects valueType(Array|Map) - never Nil
 | |
| 
 | |
| 	// an array can never return a nil slice. so no need to check f.array here.
 | |
| 	if containerLenS == 0 {
 | |
| 		if rvCanset {
 | |
| 			if rvIsNil(rv) {
 | |
| 				rvSetDirect(rv, rvSliceZeroCap(ti.rt))
 | |
| 			} else {
 | |
| 				rvSetSliceLen(rv, 0)
 | |
| 			}
 | |
| 		}
 | |
| 		slh.End()
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	rtelem0Mut := !scalarBitset.isset(ti.elemkind)
 | |
| 	rtelem := ti.elem
 | |
| 
 | |
| 	for k := reflect.Kind(ti.elemkind); k == reflect.Ptr; k = rtelem.Kind() {
 | |
| 		rtelem = rtelem.Elem()
 | |
| 	}
 | |
| 
 | |
| 	var fn *codecFn
 | |
| 
 | |
| 	var rvChanged bool
 | |
| 
 | |
| 	var rv0 = rv
 | |
| 	var rv9 reflect.Value
 | |
| 
 | |
| 	rvlen := rvLenSlice(rv)
 | |
| 	rvcap := rvCapSlice(rv)
 | |
| 	hasLen := containerLenS > 0
 | |
| 	if hasLen {
 | |
| 		if containerLenS > rvcap {
 | |
| 			oldRvlenGtZero := rvlen > 0
 | |
| 			rvlen1 := decInferLen(containerLenS, d.h.MaxInitLen, int(ti.elemsize))
 | |
| 			if rvlen1 == rvlen {
 | |
| 			} else if rvlen1 <= rvcap {
 | |
| 				if rvCanset {
 | |
| 					rvlen = rvlen1
 | |
| 					rvSetSliceLen(rv, rvlen)
 | |
| 				}
 | |
| 			} else if rvCanset { // rvlen1 > rvcap
 | |
| 				rvlen = rvlen1
 | |
| 				rv, rvCanset = rvMakeSlice(rv, f.ti, rvlen, rvlen)
 | |
| 				rvcap = rvlen
 | |
| 				rvChanged = !rvCanset
 | |
| 			} else { // rvlen1 > rvcap && !canSet
 | |
| 				d.errorf("cannot decode into non-settable slice")
 | |
| 			}
 | |
| 			if rvChanged && oldRvlenGtZero && rtelem0Mut {
 | |
| 				rvCopySlice(rv, rv0, rtelem) // only copy up to length NOT cap i.e. rv0.Slice(0, rvcap)
 | |
| 			}
 | |
| 		} else if containerLenS != rvlen {
 | |
| 			if rvCanset {
 | |
| 				rvlen = containerLenS
 | |
| 				rvSetSliceLen(rv, rvlen)
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// consider creating new element once, and just decoding into it.
 | |
| 	var elemReset = d.h.SliceElementReset
 | |
| 
 | |
| 	var j int
 | |
| 
 | |
| 	for ; d.containerNext(j, containerLenS, hasLen); j++ {
 | |
| 		if j == 0 {
 | |
| 			if rvIsNil(rv) { // means hasLen = false
 | |
| 				if rvCanset {
 | |
| 					rvlen = decInferLen(containerLenS, d.h.MaxInitLen, int(ti.elemsize))
 | |
| 					rv, rvCanset = rvMakeSlice(rv, f.ti, rvlen, rvlen)
 | |
| 					rvcap = rvlen
 | |
| 					rvChanged = !rvCanset
 | |
| 				} else {
 | |
| 					d.errorf("cannot decode into non-settable slice")
 | |
| 				}
 | |
| 			}
 | |
| 			if fn == nil {
 | |
| 				fn = d.h.fn(rtelem)
 | |
| 			}
 | |
| 		}
 | |
| 		// if indefinite, etc, then expand the slice if necessary
 | |
| 		if j >= rvlen {
 | |
| 			slh.ElemContainerState(j)
 | |
| 
 | |
| 			// expand the slice up to the cap.
 | |
| 			// Note that we did, so we have to reset it later.
 | |
| 
 | |
| 			if rvlen < rvcap {
 | |
| 				rvlen = rvcap
 | |
| 				if rvCanset {
 | |
| 					rvSetSliceLen(rv, rvlen)
 | |
| 				} else if rvChanged {
 | |
| 					rv = rvSlice(rv, rvlen)
 | |
| 				} else {
 | |
| 					d.onerror(errExpandSliceCannotChange)
 | |
| 				}
 | |
| 			} else {
 | |
| 				if !(rvCanset || rvChanged) {
 | |
| 					d.onerror(errExpandSliceCannotChange)
 | |
| 				}
 | |
| 				rv, rvcap, rvCanset = rvGrowSlice(rv, f.ti, rvcap, 1)
 | |
| 				rvlen = rvcap
 | |
| 				rvChanged = !rvCanset
 | |
| 			}
 | |
| 		} else {
 | |
| 			slh.ElemContainerState(j)
 | |
| 		}
 | |
| 		rv9 = rvSliceIndex(rv, j, f.ti)
 | |
| 		if elemReset {
 | |
| 			rvSetZero(rv9)
 | |
| 		}
 | |
| 		d.decodeValue(rv9, fn)
 | |
| 	}
 | |
| 	if j < rvlen {
 | |
| 		if rvCanset {
 | |
| 			rvSetSliceLen(rv, j)
 | |
| 		} else if rvChanged {
 | |
| 			rv = rvSlice(rv, j)
 | |
| 		}
 | |
| 		// rvlen = j
 | |
| 	} else if j == 0 && rvIsNil(rv) {
 | |
| 		if rvCanset {
 | |
| 			rv = rvSliceZeroCap(ti.rt)
 | |
| 			rvCanset = false
 | |
| 			rvChanged = true
 | |
| 		}
 | |
| 	}
 | |
| 	slh.End()
 | |
| 
 | |
| 	if rvChanged { // infers rvCanset=true, so it can be reset
 | |
| 		rvSetDirect(rv0, rv)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (d *Decoder) kArray(f *codecFnInfo, rv reflect.Value) {
 | |
| 	// An array can be set from a map or array in stream.
 | |
| 
 | |
| 	ctyp := d.d.ContainerType()
 | |
| 	if handleBytesWithinKArray && (ctyp == valueTypeBytes || ctyp == valueTypeString) {
 | |
| 		// you can only decode bytes or string in the stream into a slice or array of bytes
 | |
| 		if f.ti.elemkind != uint8(reflect.Uint8) {
 | |
| 			d.errorf("bytes/string in stream can decode into array of bytes, but not %v", f.ti.rt)
 | |
| 		}
 | |
| 		rvbs := rvGetArrayBytes(rv, nil)
 | |
| 		bs2 := d.decodeBytesInto(rvbs)
 | |
| 		if !byteSliceSameData(rvbs, bs2) && len(rvbs) > 0 && len(bs2) > 0 {
 | |
| 			copy(rvbs, bs2)
 | |
| 		}
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	slh, containerLenS := d.decSliceHelperStart() // only expects valueType(Array|Map) - never Nil
 | |
| 
 | |
| 	// an array can never return a nil slice. so no need to check f.array here.
 | |
| 	if containerLenS == 0 {
 | |
| 		slh.End()
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	rtelem := f.ti.elem
 | |
| 	for k := reflect.Kind(f.ti.elemkind); k == reflect.Ptr; k = rtelem.Kind() {
 | |
| 		rtelem = rtelem.Elem()
 | |
| 	}
 | |
| 
 | |
| 	var fn *codecFn
 | |
| 
 | |
| 	var rv9 reflect.Value
 | |
| 
 | |
| 	rvlen := rv.Len() // same as cap
 | |
| 	hasLen := containerLenS > 0
 | |
| 	if hasLen && containerLenS > rvlen {
 | |
| 		d.errorf("cannot decode into array with length: %v, less than container length: %v", rvlen, containerLenS)
 | |
| 	}
 | |
| 
 | |
| 	// consider creating new element once, and just decoding into it.
 | |
| 	var elemReset = d.h.SliceElementReset
 | |
| 
 | |
| 	for j := 0; d.containerNext(j, containerLenS, hasLen); j++ {
 | |
| 		// note that you cannot expand the array if indefinite and we go past array length
 | |
| 		if j >= rvlen {
 | |
| 			slh.arrayCannotExpand(hasLen, rvlen, j, containerLenS)
 | |
| 			return
 | |
| 		}
 | |
| 
 | |
| 		slh.ElemContainerState(j)
 | |
| 		rv9 = rvArrayIndex(rv, j, f.ti)
 | |
| 		if elemReset {
 | |
| 			rvSetZero(rv9)
 | |
| 		}
 | |
| 
 | |
| 		if fn == nil {
 | |
| 			fn = d.h.fn(rtelem)
 | |
| 		}
 | |
| 		d.decodeValue(rv9, fn)
 | |
| 	}
 | |
| 	slh.End()
 | |
| }
 | |
| 
 | |
| func (d *Decoder) kChan(f *codecFnInfo, rv reflect.Value) {
 | |
| 	// A slice can be set from a map or array in stream.
 | |
| 	// This way, the order can be kept (as order is lost with map).
 | |
| 
 | |
| 	ti := f.ti
 | |
| 	if ti.chandir&uint8(reflect.SendDir) == 0 {
 | |
| 		d.errorf("receive-only channel cannot be decoded")
 | |
| 	}
 | |
| 	ctyp := d.d.ContainerType()
 | |
| 	if ctyp == valueTypeBytes || ctyp == valueTypeString {
 | |
| 		// you can only decode bytes or string in the stream into a slice or array of bytes
 | |
| 		if !(ti.rtid == uint8SliceTypId || ti.elemkind == uint8(reflect.Uint8)) {
 | |
| 			d.errorf("bytes/string in stream must decode into slice/array of bytes, not %v", ti.rt)
 | |
| 		}
 | |
| 		bs2 := d.d.DecodeBytes(nil)
 | |
| 		irv := rv2i(rv)
 | |
| 		ch, ok := irv.(chan<- byte)
 | |
| 		if !ok {
 | |
| 			ch = irv.(chan byte)
 | |
| 		}
 | |
| 		for _, b := range bs2 {
 | |
| 			ch <- b
 | |
| 		}
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	var rvCanset = rv.CanSet()
 | |
| 
 | |
| 	// only expects valueType(Array|Map - nil handled above)
 | |
| 	slh, containerLenS := d.decSliceHelperStart()
 | |
| 
 | |
| 	// an array can never return a nil slice. so no need to check f.array here.
 | |
| 	if containerLenS == 0 {
 | |
| 		if rvCanset && rvIsNil(rv) {
 | |
| 			rvSetDirect(rv, reflect.MakeChan(ti.rt, 0))
 | |
| 		}
 | |
| 		slh.End()
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	rtelem := ti.elem
 | |
| 	useTransient := decUseTransient && ti.elemkind != byte(reflect.Ptr) && ti.tielem.flagCanTransient
 | |
| 
 | |
| 	for k := reflect.Kind(ti.elemkind); k == reflect.Ptr; k = rtelem.Kind() {
 | |
| 		rtelem = rtelem.Elem()
 | |
| 	}
 | |
| 
 | |
| 	var fn *codecFn
 | |
| 
 | |
| 	var rvChanged bool
 | |
| 	var rv0 = rv
 | |
| 	var rv9 reflect.Value
 | |
| 
 | |
| 	var rvlen int // = rv.Len()
 | |
| 	hasLen := containerLenS > 0
 | |
| 
 | |
| 	for j := 0; d.containerNext(j, containerLenS, hasLen); j++ {
 | |
| 		if j == 0 {
 | |
| 			if rvIsNil(rv) {
 | |
| 				if hasLen {
 | |
| 					rvlen = decInferLen(containerLenS, d.h.MaxInitLen, int(ti.elemsize))
 | |
| 				} else {
 | |
| 					rvlen = decDefChanCap
 | |
| 				}
 | |
| 				if rvCanset {
 | |
| 					rv = reflect.MakeChan(ti.rt, rvlen)
 | |
| 					rvChanged = true
 | |
| 				} else {
 | |
| 					d.errorf("cannot decode into non-settable chan")
 | |
| 				}
 | |
| 			}
 | |
| 			if fn == nil {
 | |
| 				fn = d.h.fn(rtelem)
 | |
| 			}
 | |
| 		}
 | |
| 		slh.ElemContainerState(j)
 | |
| 		if rv9.IsValid() {
 | |
| 			rvSetZero(rv9)
 | |
| 		} else if decUseTransient && useTransient {
 | |
| 			rv9 = d.perType.TransientAddrK(ti.elem, reflect.Kind(ti.elemkind))
 | |
| 		} else {
 | |
| 			rv9 = rvZeroAddrK(ti.elem, reflect.Kind(ti.elemkind))
 | |
| 		}
 | |
| 		if !d.d.TryNil() {
 | |
| 			d.decodeValueNoCheckNil(rv9, fn)
 | |
| 		}
 | |
| 		rv.Send(rv9)
 | |
| 	}
 | |
| 	slh.End()
 | |
| 
 | |
| 	if rvChanged { // infers rvCanset=true, so it can be reset
 | |
| 		rvSetDirect(rv0, rv)
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| func (d *Decoder) kMap(f *codecFnInfo, rv reflect.Value) {
 | |
| 	containerLen := d.mapStart(d.d.ReadMapStart())
 | |
| 	ti := f.ti
 | |
| 	if rvIsNil(rv) {
 | |
| 		rvlen := decInferLen(containerLen, d.h.MaxInitLen, int(ti.keysize+ti.elemsize))
 | |
| 		rvSetDirect(rv, makeMapReflect(ti.rt, rvlen))
 | |
| 	}
 | |
| 
 | |
| 	if containerLen == 0 {
 | |
| 		d.mapEnd()
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	ktype, vtype := ti.key, ti.elem
 | |
| 	ktypeId := rt2id(ktype)
 | |
| 	vtypeKind := reflect.Kind(ti.elemkind)
 | |
| 	ktypeKind := reflect.Kind(ti.keykind)
 | |
| 	kfast := mapKeyFastKindFor(ktypeKind)
 | |
| 	visindirect := mapStoresElemIndirect(uintptr(ti.elemsize))
 | |
| 	visref := refBitset.isset(ti.elemkind)
 | |
| 
 | |
| 	vtypePtr := vtypeKind == reflect.Ptr
 | |
| 	ktypePtr := ktypeKind == reflect.Ptr
 | |
| 
 | |
| 	vTransient := decUseTransient && !vtypePtr && ti.tielem.flagCanTransient
 | |
| 	kTransient := decUseTransient && !ktypePtr && ti.tikey.flagCanTransient
 | |
| 
 | |
| 	var vtypeElem reflect.Type
 | |
| 
 | |
| 	var keyFn, valFn *codecFn
 | |
| 	var ktypeLo, vtypeLo = ktype, vtype
 | |
| 
 | |
| 	if ktypeKind == reflect.Ptr {
 | |
| 		for ktypeLo = ktype.Elem(); ktypeLo.Kind() == reflect.Ptr; ktypeLo = ktypeLo.Elem() {
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if vtypePtr {
 | |
| 		vtypeElem = vtype.Elem()
 | |
| 		for vtypeLo = vtypeElem; vtypeLo.Kind() == reflect.Ptr; vtypeLo = vtypeLo.Elem() {
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	rvkMut := !scalarBitset.isset(ti.keykind) // if ktype is immutable, then re-use the same rvk.
 | |
| 	rvvMut := !scalarBitset.isset(ti.elemkind)
 | |
| 	rvvCanNil := isnilBitset.isset(ti.elemkind)
 | |
| 
 | |
| 	// rvk: key
 | |
| 	// rvkn: if non-mutable, on each iteration of loop, set rvk to this
 | |
| 	// rvv: value
 | |
| 	// rvvn: if non-mutable, on each iteration of loop, set rvv to this
 | |
| 	//       if mutable, may be used as a temporary value for local-scoped operations
 | |
| 	// rvva: if mutable, used as transient value for use for key lookup
 | |
| 	// rvvz: zero value of map value type, used to do a map set when nil is found in stream
 | |
| 	var rvk, rvkn, rvv, rvvn, rvva, rvvz reflect.Value
 | |
| 
 | |
| 	// we do a doMapGet if kind is mutable, and InterfaceReset=true if interface
 | |
| 	var doMapGet, doMapSet bool
 | |
| 
 | |
| 	if !d.h.MapValueReset {
 | |
| 		if rvvMut && (vtypeKind != reflect.Interface || !d.h.InterfaceReset) {
 | |
| 			doMapGet = true
 | |
| 			rvva = mapAddrLoopvarRV(vtype, vtypeKind)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	ktypeIsString := ktypeId == stringTypId
 | |
| 	ktypeIsIntf := ktypeId == intfTypId
 | |
| 
 | |
| 	hasLen := containerLen > 0
 | |
| 
 | |
| 	// kstrbs is used locally for the key bytes, so we can reduce allocation.
 | |
| 	// When we read keys, we copy to this local bytes array, and use a stringView for lookup.
 | |
| 	// We only convert it into a true string if we have to do a set on the map.
 | |
| 
 | |
| 	// Since kstr2bs will usually escape to the heap, declaring a [64]byte array may be wasteful.
 | |
| 	// It is only valuable if we are sure that it is declared on the stack.
 | |
| 	// var kstrarr [64]byte // most keys are less than 32 bytes, and even more less than 64
 | |
| 	// var kstrbs = kstrarr[:0]
 | |
| 	var kstrbs []byte
 | |
| 	var kstr2bs []byte
 | |
| 	var s string
 | |
| 
 | |
| 	var callFnRvk bool
 | |
| 
 | |
| 	fnRvk2 := func() (s string) {
 | |
| 		callFnRvk = false
 | |
| 		if len(kstr2bs) < 2 {
 | |
| 			return string(kstr2bs)
 | |
| 		}
 | |
| 		return d.mapKeyString(&callFnRvk, &kstrbs, &kstr2bs)
 | |
| 	}
 | |
| 
 | |
| 	// Use a possibly transient (map) value (and key), to reduce allocation
 | |
| 
 | |
| 	for j := 0; d.containerNext(j, containerLen, hasLen); j++ {
 | |
| 		callFnRvk = false
 | |
| 		if j == 0 {
 | |
| 			// if vtypekind is a scalar and thus value will be decoded using TransientAddrK,
 | |
| 			// then it is ok to use TransientAddr2K for the map key.
 | |
| 			if decUseTransient && vTransient && kTransient {
 | |
| 				rvk = d.perType.TransientAddr2K(ktype, ktypeKind)
 | |
| 			} else {
 | |
| 				rvk = rvZeroAddrK(ktype, ktypeKind)
 | |
| 			}
 | |
| 			if !rvkMut {
 | |
| 				rvkn = rvk
 | |
| 			}
 | |
| 			if !rvvMut {
 | |
| 				if decUseTransient && vTransient {
 | |
| 					rvvn = d.perType.TransientAddrK(vtype, vtypeKind)
 | |
| 				} else {
 | |
| 					rvvn = rvZeroAddrK(vtype, vtypeKind)
 | |
| 				}
 | |
| 			}
 | |
| 			if !ktypeIsString && keyFn == nil {
 | |
| 				keyFn = d.h.fn(ktypeLo)
 | |
| 			}
 | |
| 			if valFn == nil {
 | |
| 				valFn = d.h.fn(vtypeLo)
 | |
| 			}
 | |
| 		} else if rvkMut {
 | |
| 			rvSetZero(rvk)
 | |
| 		} else {
 | |
| 			rvk = rvkn
 | |
| 		}
 | |
| 
 | |
| 		d.mapElemKey()
 | |
| 		if ktypeIsString {
 | |
| 			kstr2bs = d.d.DecodeStringAsBytes()
 | |
| 			rvSetString(rvk, fnRvk2())
 | |
| 		} else {
 | |
| 			d.decByteState = decByteStateNone
 | |
| 			d.decodeValue(rvk, keyFn)
 | |
| 			// special case if interface wrapping a byte slice
 | |
| 			if ktypeIsIntf {
 | |
| 				if rvk2 := rvk.Elem(); rvk2.IsValid() && rvk2.Type() == uint8SliceTyp {
 | |
| 					kstr2bs = rvGetBytes(rvk2)
 | |
| 					rvSetIntf(rvk, rv4istr(fnRvk2()))
 | |
| 				}
 | |
| 				// NOTE: consider failing early if map/slice/func
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		d.mapElemValue()
 | |
| 
 | |
| 		if d.d.TryNil() {
 | |
| 			// since a map, we have to set zero value if needed
 | |
| 			if !rvvz.IsValid() {
 | |
| 				rvvz = rvZeroK(vtype, vtypeKind)
 | |
| 			}
 | |
| 			if callFnRvk {
 | |
| 				s = d.string(kstr2bs)
 | |
| 				if ktypeIsString {
 | |
| 					rvSetString(rvk, s)
 | |
| 				} else { // ktypeIsIntf
 | |
| 					rvSetIntf(rvk, rv4istr(s))
 | |
| 				}
 | |
| 			}
 | |
| 			mapSet(rv, rvk, rvvz, kfast, visindirect, visref)
 | |
| 			continue
 | |
| 		}
 | |
| 
 | |
| 		// there is non-nil content in the stream to decode ...
 | |
| 		// consequently, it's ok to just directly create new value to the pointer (if vtypePtr)
 | |
| 
 | |
| 		// set doMapSet to false iff u do a get, and the return value is a non-nil pointer
 | |
| 		doMapSet = true
 | |
| 
 | |
| 		if !rvvMut {
 | |
| 			rvv = rvvn
 | |
| 		} else if !doMapGet {
 | |
| 			goto NEW_RVV
 | |
| 		} else {
 | |
| 			rvv = mapGet(rv, rvk, rvva, kfast, visindirect, visref)
 | |
| 			if !rvv.IsValid() || (rvvCanNil && rvIsNil(rvv)) {
 | |
| 				goto NEW_RVV
 | |
| 			}
 | |
| 			switch vtypeKind {
 | |
| 			case reflect.Ptr, reflect.Map: // ok to decode directly into map
 | |
| 				doMapSet = false
 | |
| 			case reflect.Interface:
 | |
| 				// if an interface{}, just decode into it iff a non-nil ptr/map, else allocate afresh
 | |
| 				rvvn = rvv.Elem()
 | |
| 				if k := rvvn.Kind(); (k == reflect.Ptr || k == reflect.Map) && !rvIsNil(rvvn) {
 | |
| 					d.decodeValueNoCheckNil(rvvn, nil) // valFn is incorrect here
 | |
| 					continue
 | |
| 				}
 | |
| 				// make addressable (so we can set the interface)
 | |
| 				rvvn = rvZeroAddrK(vtype, vtypeKind)
 | |
| 				rvSetIntf(rvvn, rvv)
 | |
| 				rvv = rvvn
 | |
| 			default:
 | |
| 				// make addressable (so you can set the slice/array elements, etc)
 | |
| 				if decUseTransient && vTransient {
 | |
| 					rvvn = d.perType.TransientAddrK(vtype, vtypeKind)
 | |
| 				} else {
 | |
| 					rvvn = rvZeroAddrK(vtype, vtypeKind)
 | |
| 				}
 | |
| 				rvSetDirect(rvvn, rvv)
 | |
| 				rvv = rvvn
 | |
| 			}
 | |
| 		}
 | |
| 		goto DECODE_VALUE_NO_CHECK_NIL
 | |
| 
 | |
| 	NEW_RVV:
 | |
| 		if vtypePtr {
 | |
| 			rvv = reflect.New(vtypeElem) // non-nil in stream, so allocate value
 | |
| 		} else if decUseTransient && vTransient {
 | |
| 			rvv = d.perType.TransientAddrK(vtype, vtypeKind)
 | |
| 		} else {
 | |
| 			rvv = rvZeroAddrK(vtype, vtypeKind)
 | |
| 		}
 | |
| 
 | |
| 	DECODE_VALUE_NO_CHECK_NIL:
 | |
| 		d.decodeValueNoCheckNil(rvv, valFn)
 | |
| 
 | |
| 		if doMapSet {
 | |
| 			if callFnRvk {
 | |
| 				s = d.string(kstr2bs)
 | |
| 				if ktypeIsString {
 | |
| 					rvSetString(rvk, s)
 | |
| 				} else { // ktypeIsIntf
 | |
| 					rvSetIntf(rvk, rv4istr(s))
 | |
| 				}
 | |
| 			}
 | |
| 			mapSet(rv, rvk, rvv, kfast, visindirect, visref)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	d.mapEnd()
 | |
| }
 | |
| 
 | |
| // Decoder reads and decodes an object from an input stream in a supported format.
 | |
| //
 | |
| // Decoder is NOT safe for concurrent use i.e. a Decoder cannot be used
 | |
| // concurrently in multiple goroutines.
 | |
| //
 | |
| // However, as Decoder could be allocation heavy to initialize, a Reset method is provided
 | |
| // so its state can be reused to decode new input streams repeatedly.
 | |
| // This is the idiomatic way to use.
 | |
| type Decoder struct {
 | |
| 	panicHdl
 | |
| 
 | |
| 	d decDriver
 | |
| 
 | |
| 	// cache the mapTypeId and sliceTypeId for faster comparisons
 | |
| 	mtid uintptr
 | |
| 	stid uintptr
 | |
| 
 | |
| 	h *BasicHandle
 | |
| 
 | |
| 	blist bytesFreelist
 | |
| 
 | |
| 	// ---- cpu cache line boundary?
 | |
| 	decRd
 | |
| 
 | |
| 	// ---- cpu cache line boundary?
 | |
| 	n fauxUnion
 | |
| 
 | |
| 	hh  Handle
 | |
| 	err error
 | |
| 
 | |
| 	perType decPerType
 | |
| 
 | |
| 	// used for interning strings
 | |
| 	is internerMap
 | |
| 
 | |
| 	// ---- cpu cache line boundary?
 | |
| 	// ---- writable fields during execution --- *try* to keep in sep cache line
 | |
| 	maxdepth int16
 | |
| 	depth    int16
 | |
| 
 | |
| 	// Extensions can call Decode() within a current Decode() call.
 | |
| 	// We need to know when the top level Decode() call returns,
 | |
| 	// so we can decide whether to Release() or not.
 | |
| 	calls uint16 // what depth in mustDecode are we in now.
 | |
| 
 | |
| 	c containerState
 | |
| 
 | |
| 	decByteState
 | |
| 
 | |
| 	// b is an always-available scratch buffer used by Decoder and decDrivers.
 | |
| 	// By being always-available, it can be used for one-off things without
 | |
| 	// having to get from freelist, use, and return back to freelist.
 | |
| 	b [decScratchByteArrayLen]byte
 | |
| }
 | |
| 
 | |
| // NewDecoder returns a Decoder for decoding a stream of bytes from an io.Reader.
 | |
| //
 | |
| // For efficiency, Users are encouraged to configure ReaderBufferSize on the handle
 | |
| // OR pass in a memory buffered reader (eg bufio.Reader, bytes.Buffer).
 | |
| func NewDecoder(r io.Reader, h Handle) *Decoder {
 | |
| 	d := h.newDecDriver().decoder()
 | |
| 	if r != nil {
 | |
| 		d.Reset(r)
 | |
| 	}
 | |
| 	return d
 | |
| }
 | |
| 
 | |
| // NewDecoderBytes returns a Decoder which efficiently decodes directly
 | |
| // from a byte slice with zero copying.
 | |
| func NewDecoderBytes(in []byte, h Handle) *Decoder {
 | |
| 	d := h.newDecDriver().decoder()
 | |
| 	if in != nil {
 | |
| 		d.ResetBytes(in)
 | |
| 	}
 | |
| 	return d
 | |
| }
 | |
| 
 | |
| // NewDecoderString returns a Decoder which efficiently decodes directly
 | |
| // from a string with zero copying.
 | |
| //
 | |
| // It is a convenience function that calls NewDecoderBytes with a
 | |
| // []byte view into the string.
 | |
| //
 | |
| // This can be an efficient zero-copy if using default mode i.e. without codec.safe tag.
 | |
| func NewDecoderString(s string, h Handle) *Decoder {
 | |
| 	return NewDecoderBytes(bytesView(s), h)
 | |
| }
 | |
| 
 | |
| func (d *Decoder) r() *decRd {
 | |
| 	return &d.decRd
 | |
| }
 | |
| 
 | |
| func (d *Decoder) init(h Handle) {
 | |
| 	initHandle(h)
 | |
| 	d.cbreak = d.js || d.cbor
 | |
| 	d.bytes = true
 | |
| 	d.err = errDecoderNotInitialized
 | |
| 	d.h = h.getBasicHandle()
 | |
| 	d.hh = h
 | |
| 	d.be = h.isBinary()
 | |
| 	if d.h.InternString && d.is == nil {
 | |
| 		d.is.init()
 | |
| 	}
 | |
| 	// NOTE: do not initialize d.n here. It is lazily initialized in d.naked()
 | |
| }
 | |
| 
 | |
| func (d *Decoder) resetCommon() {
 | |
| 	d.d.reset()
 | |
| 	d.err = nil
 | |
| 	d.c = 0
 | |
| 	d.decByteState = decByteStateNone
 | |
| 	d.depth = 0
 | |
| 	d.calls = 0
 | |
| 	// reset all things which were cached from the Handle, but could change
 | |
| 	d.maxdepth = decDefMaxDepth
 | |
| 	if d.h.MaxDepth > 0 {
 | |
| 		d.maxdepth = d.h.MaxDepth
 | |
| 	}
 | |
| 	d.mtid = 0
 | |
| 	d.stid = 0
 | |
| 	d.mtr = false
 | |
| 	d.str = false
 | |
| 	if d.h.MapType != nil {
 | |
| 		d.mtid = rt2id(d.h.MapType)
 | |
| 		d.mtr = fastpathAvIndex(d.mtid) != -1
 | |
| 	}
 | |
| 	if d.h.SliceType != nil {
 | |
| 		d.stid = rt2id(d.h.SliceType)
 | |
| 		d.str = fastpathAvIndex(d.stid) != -1
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Reset the Decoder with a new Reader to decode from,
 | |
| // clearing all state from last run(s).
 | |
| func (d *Decoder) Reset(r io.Reader) {
 | |
| 	if r == nil {
 | |
| 		r = &eofReader
 | |
| 	}
 | |
| 	d.bytes = false
 | |
| 	if d.ri == nil {
 | |
| 		d.ri = new(ioDecReader)
 | |
| 	}
 | |
| 	d.ri.reset(r, d.h.ReaderBufferSize, &d.blist)
 | |
| 	d.decReader = d.ri
 | |
| 	d.resetCommon()
 | |
| }
 | |
| 
 | |
| // ResetBytes resets the Decoder with a new []byte to decode from,
 | |
| // clearing all state from last run(s).
 | |
| func (d *Decoder) ResetBytes(in []byte) {
 | |
| 	if in == nil {
 | |
| 		in = []byte{}
 | |
| 	}
 | |
| 	d.bytes = true
 | |
| 	d.decReader = &d.rb
 | |
| 	d.rb.reset(in)
 | |
| 	d.resetCommon()
 | |
| }
 | |
| 
 | |
| // ResetString resets the Decoder with a new string to decode from,
 | |
| // clearing all state from last run(s).
 | |
| //
 | |
| // It is a convenience function that calls ResetBytes with a
 | |
| // []byte view into the string.
 | |
| //
 | |
| // This can be an efficient zero-copy if using default mode i.e. without codec.safe tag.
 | |
| func (d *Decoder) ResetString(s string) {
 | |
| 	d.ResetBytes(bytesView(s))
 | |
| }
 | |
| 
 | |
| func (d *Decoder) naked() *fauxUnion {
 | |
| 	return &d.n
 | |
| }
 | |
| 
 | |
| // Decode decodes the stream from reader and stores the result in the
 | |
| // value pointed to by v. v cannot be a nil pointer. v can also be
 | |
| // a reflect.Value of a pointer.
 | |
| //
 | |
| // Note that a pointer to a nil interface is not a nil pointer.
 | |
| // If you do not know what type of stream it is, pass in a pointer to a nil interface.
 | |
| // We will decode and store a value in that nil interface.
 | |
| //
 | |
| // Sample usages:
 | |
| //
 | |
| //	// Decoding into a non-nil typed value
 | |
| //	var f float32
 | |
| //	err = codec.NewDecoder(r, handle).Decode(&f)
 | |
| //
 | |
| //	// Decoding into nil interface
 | |
| //	var v interface{}
 | |
| //	dec := codec.NewDecoder(r, handle)
 | |
| //	err = dec.Decode(&v)
 | |
| //
 | |
| // When decoding into a nil interface{}, we will decode into an appropriate value based
 | |
| // on the contents of the stream:
 | |
| //   - Numbers are decoded as float64, int64 or uint64.
 | |
| //   - Other values are decoded appropriately depending on the type:
 | |
| //     bool, string, []byte, time.Time, etc
 | |
| //   - Extensions are decoded as RawExt (if no ext function registered for the tag)
 | |
| //
 | |
| // Configurations exist on the Handle to override defaults
 | |
| // (e.g. for MapType, SliceType and how to decode raw bytes).
 | |
| //
 | |
| // When decoding into a non-nil interface{} value, the mode of encoding is based on the
 | |
| // type of the value. When a value is seen:
 | |
| //   - If an extension is registered for it, call that extension function
 | |
| //   - If it implements BinaryUnmarshaler, call its UnmarshalBinary(data []byte) error
 | |
| //   - Else decode it based on its reflect.Kind
 | |
| //
 | |
| // There are some special rules when decoding into containers (slice/array/map/struct).
 | |
| // Decode will typically use the stream contents to UPDATE the container i.e. the values
 | |
| // in these containers will not be zero'ed before decoding.
 | |
| //   - A map can be decoded from a stream map, by updating matching keys.
 | |
| //   - A slice can be decoded from a stream array,
 | |
| //     by updating the first n elements, where n is length of the stream.
 | |
| //   - A slice can be decoded from a stream map, by decoding as if
 | |
| //     it contains a sequence of key-value pairs.
 | |
| //   - A struct can be decoded from a stream map, by updating matching fields.
 | |
| //   - A struct can be decoded from a stream array,
 | |
| //     by updating fields as they occur in the struct (by index).
 | |
| //
 | |
| // This in-place update maintains consistency in the decoding philosophy (i.e. we ALWAYS update
 | |
| // in place by default). However, the consequence of this is that values in slices or maps
 | |
| // which are not zero'ed before hand, will have part of the prior values in place after decode
 | |
| // if the stream doesn't contain an update for those parts.
 | |
| //
 | |
| // This in-place update can be disabled by configuring the MapValueReset and SliceElementReset
 | |
| // decode options available on every handle.
 | |
| //
 | |
| // Furthermore, when decoding a stream map or array with length of 0 into a nil map or slice,
 | |
| // we reset the destination map or slice to a zero-length value.
 | |
| //
 | |
| // However, when decoding a stream nil, we reset the destination container
 | |
| // to its "zero" value (e.g. nil for slice/map, etc).
 | |
| //
 | |
| // Note: we allow nil values in the stream anywhere except for map keys.
 | |
| // A nil value in the encoded stream where a map key is expected is treated as an error.
 | |
| func (d *Decoder) Decode(v interface{}) (err error) {
 | |
| 	// tried to use closure, as runtime optimizes defer with no params.
 | |
| 	// This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
 | |
| 	// Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
 | |
| 	if !debugging {
 | |
| 		defer func() {
 | |
| 			if x := recover(); x != nil {
 | |
| 				panicValToErr(d, x, &d.err)
 | |
| 				err = d.err
 | |
| 			}
 | |
| 		}()
 | |
| 	}
 | |
| 
 | |
| 	d.MustDecode(v)
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // MustDecode is like Decode, but panics if unable to Decode.
 | |
| //
 | |
| // Note: This provides insight to the code location that triggered the error.
 | |
| func (d *Decoder) MustDecode(v interface{}) {
 | |
| 	halt.onerror(d.err)
 | |
| 	if d.hh == nil {
 | |
| 		halt.onerror(errNoFormatHandle)
 | |
| 	}
 | |
| 
 | |
| 	// Top-level: v is a pointer and not nil.
 | |
| 	d.calls++
 | |
| 	d.decode(v)
 | |
| 	d.calls--
 | |
| }
 | |
| 
 | |
| // Release releases shared (pooled) resources.
 | |
| //
 | |
| // It is important to call Release() when done with a Decoder, so those resources
 | |
| // are released instantly for use by subsequently created Decoders.
 | |
| //
 | |
| // By default, Release() is automatically called unless the option ExplicitRelease is set.
 | |
| //
 | |
| // Deprecated: Release is a no-op as pooled resources are not used with an Decoder.
 | |
| // This method is kept for compatibility reasons only.
 | |
| func (d *Decoder) Release() {
 | |
| }
 | |
| 
 | |
| func (d *Decoder) swallow() {
 | |
| 	d.d.nextValueBytes(nil)
 | |
| }
 | |
| 
 | |
| func (d *Decoder) swallowErr() (err error) {
 | |
| 	if !debugging {
 | |
| 		defer func() {
 | |
| 			if x := recover(); x != nil {
 | |
| 				panicValToErr(d, x, &err)
 | |
| 			}
 | |
| 		}()
 | |
| 	}
 | |
| 	d.swallow()
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func setZero(iv interface{}) {
 | |
| 	if iv == nil {
 | |
| 		return
 | |
| 	}
 | |
| 	rv, ok := isNil(iv)
 | |
| 	if ok {
 | |
| 		return
 | |
| 	}
 | |
| 	// var canDecode bool
 | |
| 	switch v := iv.(type) {
 | |
| 	case *string:
 | |
| 		*v = ""
 | |
| 	case *bool:
 | |
| 		*v = false
 | |
| 	case *int:
 | |
| 		*v = 0
 | |
| 	case *int8:
 | |
| 		*v = 0
 | |
| 	case *int16:
 | |
| 		*v = 0
 | |
| 	case *int32:
 | |
| 		*v = 0
 | |
| 	case *int64:
 | |
| 		*v = 0
 | |
| 	case *uint:
 | |
| 		*v = 0
 | |
| 	case *uint8:
 | |
| 		*v = 0
 | |
| 	case *uint16:
 | |
| 		*v = 0
 | |
| 	case *uint32:
 | |
| 		*v = 0
 | |
| 	case *uint64:
 | |
| 		*v = 0
 | |
| 	case *float32:
 | |
| 		*v = 0
 | |
| 	case *float64:
 | |
| 		*v = 0
 | |
| 	case *complex64:
 | |
| 		*v = 0
 | |
| 	case *complex128:
 | |
| 		*v = 0
 | |
| 	case *[]byte:
 | |
| 		*v = nil
 | |
| 	case *Raw:
 | |
| 		*v = nil
 | |
| 	case *time.Time:
 | |
| 		*v = time.Time{}
 | |
| 	case reflect.Value:
 | |
| 		decSetNonNilRV2Zero(v)
 | |
| 	default:
 | |
| 		if !fastpathDecodeSetZeroTypeSwitch(iv) {
 | |
| 			decSetNonNilRV2Zero(rv)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // decSetNonNilRV2Zero will set the non-nil value to its zero value.
 | |
| func decSetNonNilRV2Zero(v reflect.Value) {
 | |
| 	// If not decodeable (settable), we do not touch it.
 | |
| 	// We considered empty'ing it if not decodeable e.g.
 | |
| 	//    - if chan, drain it
 | |
| 	//    - if map, clear it
 | |
| 	//    - if slice or array, zero all elements up to len
 | |
| 	//
 | |
| 	// However, we decided instead that we either will set the
 | |
| 	// whole value to the zero value, or leave AS IS.
 | |
| 
 | |
| 	k := v.Kind()
 | |
| 	if k == reflect.Interface {
 | |
| 		decSetNonNilRV2Zero4Intf(v)
 | |
| 	} else if k == reflect.Ptr {
 | |
| 		decSetNonNilRV2Zero4Ptr(v)
 | |
| 	} else if v.CanSet() {
 | |
| 		rvSetDirectZero(v)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func decSetNonNilRV2Zero4Ptr(v reflect.Value) {
 | |
| 	ve := v.Elem()
 | |
| 	if ve.CanSet() {
 | |
| 		rvSetZero(ve) // we can have a pointer to an interface
 | |
| 	} else if v.CanSet() {
 | |
| 		rvSetZero(v)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func decSetNonNilRV2Zero4Intf(v reflect.Value) {
 | |
| 	ve := v.Elem()
 | |
| 	if ve.CanSet() {
 | |
| 		rvSetDirectZero(ve) // interfaces always have element as a non-interface
 | |
| 	} else if v.CanSet() {
 | |
| 		rvSetZero(v)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (d *Decoder) decode(iv interface{}) {
 | |
| 	// a switch with only concrete types can be optimized.
 | |
| 	// consequently, we deal with nil and interfaces outside the switch.
 | |
| 
 | |
| 	if iv == nil {
 | |
| 		d.onerror(errCannotDecodeIntoNil)
 | |
| 	}
 | |
| 
 | |
| 	switch v := iv.(type) {
 | |
| 	// case nil:
 | |
| 	// case Selfer:
 | |
| 	case reflect.Value:
 | |
| 		if x, _ := isDecodeable(v); !x {
 | |
| 			d.haltAsNotDecodeable(v)
 | |
| 		}
 | |
| 		d.decodeValue(v, nil)
 | |
| 	case *string:
 | |
| 		*v = d.stringZC(d.d.DecodeStringAsBytes())
 | |
| 	case *bool:
 | |
| 		*v = d.d.DecodeBool()
 | |
| 	case *int:
 | |
| 		*v = int(chkOvf.IntV(d.d.DecodeInt64(), intBitsize))
 | |
| 	case *int8:
 | |
| 		*v = int8(chkOvf.IntV(d.d.DecodeInt64(), 8))
 | |
| 	case *int16:
 | |
| 		*v = int16(chkOvf.IntV(d.d.DecodeInt64(), 16))
 | |
| 	case *int32:
 | |
| 		*v = int32(chkOvf.IntV(d.d.DecodeInt64(), 32))
 | |
| 	case *int64:
 | |
| 		*v = d.d.DecodeInt64()
 | |
| 	case *uint:
 | |
| 		*v = uint(chkOvf.UintV(d.d.DecodeUint64(), uintBitsize))
 | |
| 	case *uint8:
 | |
| 		*v = uint8(chkOvf.UintV(d.d.DecodeUint64(), 8))
 | |
| 	case *uint16:
 | |
| 		*v = uint16(chkOvf.UintV(d.d.DecodeUint64(), 16))
 | |
| 	case *uint32:
 | |
| 		*v = uint32(chkOvf.UintV(d.d.DecodeUint64(), 32))
 | |
| 	case *uint64:
 | |
| 		*v = d.d.DecodeUint64()
 | |
| 	case *float32:
 | |
| 		*v = d.decodeFloat32()
 | |
| 	case *float64:
 | |
| 		*v = d.d.DecodeFloat64()
 | |
| 	case *complex64:
 | |
| 		*v = complex(d.decodeFloat32(), 0)
 | |
| 	case *complex128:
 | |
| 		*v = complex(d.d.DecodeFloat64(), 0)
 | |
| 	case *[]byte:
 | |
| 		*v = d.decodeBytesInto(*v)
 | |
| 	case []byte:
 | |
| 		// not addressable byte slice, so do not decode into it past the length
 | |
| 		b := d.decodeBytesInto(v[:len(v):len(v)])
 | |
| 		if !(len(b) > 0 && len(b) == len(v) && &b[0] == &v[0]) { // not same slice
 | |
| 			copy(v, b)
 | |
| 		}
 | |
| 	case *time.Time:
 | |
| 		*v = d.d.DecodeTime()
 | |
| 	case *Raw:
 | |
| 		*v = d.rawBytes()
 | |
| 
 | |
| 	case *interface{}:
 | |
| 		d.decodeValue(rv4iptr(v), nil)
 | |
| 
 | |
| 	default:
 | |
| 		// we can't check non-predefined types, as they might be a Selfer or extension.
 | |
| 		if skipFastpathTypeSwitchInDirectCall || !fastpathDecodeTypeSwitch(iv, d) {
 | |
| 			v := reflect.ValueOf(iv)
 | |
| 			if x, _ := isDecodeable(v); !x {
 | |
| 				d.haltAsNotDecodeable(v)
 | |
| 			}
 | |
| 			d.decodeValue(v, nil)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // decodeValue MUST be called by the actual value we want to decode into,
 | |
| // not its addr or a reference to it.
 | |
| //
 | |
| // This way, we know if it is itself a pointer, and can handle nil in
 | |
| // the stream effectively.
 | |
| //
 | |
| // Note that decodeValue will handle nil in the stream early, so that the
 | |
| // subsequent calls i.e. kXXX methods, etc do not have to handle it themselves.
 | |
| func (d *Decoder) decodeValue(rv reflect.Value, fn *codecFn) {
 | |
| 	if d.d.TryNil() {
 | |
| 		decSetNonNilRV2Zero(rv)
 | |
| 		return
 | |
| 	}
 | |
| 	d.decodeValueNoCheckNil(rv, fn)
 | |
| }
 | |
| 
 | |
| func (d *Decoder) decodeValueNoCheckNil(rv reflect.Value, fn *codecFn) {
 | |
| 	// If stream is not containing a nil value, then we can deref to the base
 | |
| 	// non-pointer value, and decode into that.
 | |
| 	var rvp reflect.Value
 | |
| 	var rvpValid bool
 | |
| PTR:
 | |
| 	if rv.Kind() == reflect.Ptr {
 | |
| 		rvpValid = true
 | |
| 		if rvIsNil(rv) {
 | |
| 			rvSetDirect(rv, reflect.New(rv.Type().Elem()))
 | |
| 		}
 | |
| 		rvp = rv
 | |
| 		rv = rv.Elem()
 | |
| 		goto PTR
 | |
| 	}
 | |
| 
 | |
| 	if fn == nil {
 | |
| 		fn = d.h.fn(rv.Type())
 | |
| 	}
 | |
| 	if fn.i.addrD {
 | |
| 		if rvpValid {
 | |
| 			rv = rvp
 | |
| 		} else if rv.CanAddr() {
 | |
| 			rv = rvAddr(rv, fn.i.ti.ptr)
 | |
| 		} else if fn.i.addrDf {
 | |
| 			d.errorf("cannot decode into a non-pointer value")
 | |
| 		}
 | |
| 	}
 | |
| 	fn.fd(d, &fn.i, rv)
 | |
| }
 | |
| 
 | |
| func (d *Decoder) structFieldNotFound(index int, rvkencname string) {
 | |
| 	// Note: rvkencname is used only if there is an error, to pass into d.errorf.
 | |
| 	// Consequently, it is ok to pass in a stringView
 | |
| 	// Since rvkencname may be a stringView, do NOT pass it to another function.
 | |
| 	if d.h.ErrorIfNoField {
 | |
| 		if index >= 0 {
 | |
| 			d.errorf("no matching struct field found when decoding stream array at index %v", index)
 | |
| 		} else if rvkencname != "" {
 | |
| 			d.errorf("no matching struct field found when decoding stream map with key " + rvkencname)
 | |
| 		}
 | |
| 	}
 | |
| 	d.swallow()
 | |
| }
 | |
| 
 | |
| func (d *Decoder) arrayCannotExpand(sliceLen, streamLen int) {
 | |
| 	if d.h.ErrorIfNoArrayExpand {
 | |
| 		d.errorf("cannot expand array len during decode from %v to %v", sliceLen, streamLen)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (d *Decoder) haltAsNotDecodeable(rv reflect.Value) {
 | |
| 	if !rv.IsValid() {
 | |
| 		d.onerror(errCannotDecodeIntoNil)
 | |
| 	}
 | |
| 	// check if an interface can be retrieved, before grabbing an interface
 | |
| 	if !rv.CanInterface() {
 | |
| 		d.errorf("cannot decode into a value without an interface: %v", rv)
 | |
| 	}
 | |
| 	d.errorf("cannot decode into value of kind: %v, %#v", rv.Kind(), rv2i(rv))
 | |
| }
 | |
| 
 | |
| func (d *Decoder) depthIncr() {
 | |
| 	d.depth++
 | |
| 	if d.depth >= d.maxdepth {
 | |
| 		d.onerror(errMaxDepthExceeded)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (d *Decoder) depthDecr() {
 | |
| 	d.depth--
 | |
| }
 | |
| 
 | |
| // Possibly get an interned version of a string, iff InternString=true and decoding a map key.
 | |
| //
 | |
| // This should mostly be used for map keys, where the key type is string.
 | |
| // This is because keys of a map/struct are typically reused across many objects.
 | |
| func (d *Decoder) string(v []byte) (s string) {
 | |
| 	if d.is == nil || d.c != containerMapKey || len(v) < 2 || len(v) > internMaxStrLen {
 | |
| 		return string(v)
 | |
| 	}
 | |
| 	return d.is.string(v)
 | |
| }
 | |
| 
 | |
| func (d *Decoder) zerocopy() bool {
 | |
| 	return d.bytes && d.h.ZeroCopy
 | |
| }
 | |
| 
 | |
| // decodeBytesInto is a convenience delegate function to decDriver.DecodeBytes.
 | |
| // It ensures that `in` is not a nil byte, before calling decDriver.DecodeBytes,
 | |
| // as decDriver.DecodeBytes treats a nil as a hint to use its internal scratch buffer.
 | |
| func (d *Decoder) decodeBytesInto(in []byte) (v []byte) {
 | |
| 	if in == nil {
 | |
| 		in = []byte{}
 | |
| 	}
 | |
| 	return d.d.DecodeBytes(in)
 | |
| }
 | |
| 
 | |
| func (d *Decoder) rawBytes() (v []byte) {
 | |
| 	// ensure that this is not a view into the bytes
 | |
| 	// i.e. if necessary, make new copy always.
 | |
| 	v = d.d.nextValueBytes([]byte{})
 | |
| 	if d.bytes && !d.h.ZeroCopy {
 | |
| 		vv := make([]byte, len(v))
 | |
| 		copy(vv, v) // using copy here triggers make+copy optimization eliding memclr
 | |
| 		v = vv
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (d *Decoder) wrapErr(v error, err *error) {
 | |
| 	*err = wrapCodecErr(v, d.hh.Name(), d.NumBytesRead(), false)
 | |
| }
 | |
| 
 | |
| // NumBytesRead returns the number of bytes read
 | |
| func (d *Decoder) NumBytesRead() int {
 | |
| 	return int(d.r().numread())
 | |
| }
 | |
| 
 | |
| // decodeFloat32 will delegate to an appropriate DecodeFloat32 implementation (if exists),
 | |
| // else if will call DecodeFloat64 and ensure the value doesn't overflow.
 | |
| //
 | |
| // Note that we return float64 to reduce unnecessary conversions
 | |
| func (d *Decoder) decodeFloat32() float32 {
 | |
| 	if d.js {
 | |
| 		return d.jsondriver().DecodeFloat32() // custom implementation for 32-bit
 | |
| 	}
 | |
| 	return float32(chkOvf.Float32V(d.d.DecodeFloat64()))
 | |
| }
 | |
| 
 | |
| // ---- container tracking
 | |
| // Note: We update the .c after calling the callback.
 | |
| // This way, the callback can know what the last status was.
 | |
| 
 | |
| // MARKER: do not call mapEnd if mapStart returns containerLenNil.
 | |
| 
 | |
| // MARKER: optimize decoding since all formats do not truly support all decDriver'ish operations.
 | |
| // - Read(Map|Array)Start is only supported by all formats.
 | |
| // - CheckBreak is only supported by json and cbor.
 | |
| // - Read(Map|Array)End is only supported by json.
 | |
| // - Read(Map|Array)Elem(Kay|Value) is only supported by json.
 | |
| // Honor these in the code, to reduce the number of interface calls (even if empty).
 | |
| 
 | |
| func (d *Decoder) checkBreak() (v bool) {
 | |
| 	// MARKER: jsonDecDriver.CheckBreak() cannot be inlined (over budget inlining cost).
 | |
| 	// Consequently, there's no benefit in incurring the cost of this wrapping function.
 | |
| 	// It is faster to just call the interface method directly.
 | |
| 
 | |
| 	// if d.js {
 | |
| 	// 	return d.jsondriver().CheckBreak()
 | |
| 	// }
 | |
| 	// if d.cbor {
 | |
| 	// 	return d.cbordriver().CheckBreak()
 | |
| 	// }
 | |
| 
 | |
| 	if d.cbreak {
 | |
| 		v = d.d.CheckBreak()
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (d *Decoder) containerNext(j, containerLen int, hasLen bool) bool {
 | |
| 	// MARKER: keep in sync with gen-helper.go.tmpl
 | |
| 
 | |
| 	// return (hasLen && j < containerLen) || !(hasLen || slh.d.checkBreak())
 | |
| 	if hasLen {
 | |
| 		return j < containerLen
 | |
| 	}
 | |
| 	return !d.checkBreak()
 | |
| }
 | |
| 
 | |
| func (d *Decoder) mapStart(v int) int {
 | |
| 	if v != containerLenNil {
 | |
| 		d.depthIncr()
 | |
| 		d.c = containerMapStart
 | |
| 	}
 | |
| 	return v
 | |
| }
 | |
| 
 | |
| func (d *Decoder) mapElemKey() {
 | |
| 	if d.js {
 | |
| 		d.jsondriver().ReadMapElemKey()
 | |
| 	}
 | |
| 	d.c = containerMapKey
 | |
| }
 | |
| 
 | |
| func (d *Decoder) mapElemValue() {
 | |
| 	if d.js {
 | |
| 		d.jsondriver().ReadMapElemValue()
 | |
| 	}
 | |
| 	d.c = containerMapValue
 | |
| }
 | |
| 
 | |
| func (d *Decoder) mapEnd() {
 | |
| 	if d.js {
 | |
| 		d.jsondriver().ReadMapEnd()
 | |
| 	}
 | |
| 	// d.d.ReadMapEnd()
 | |
| 	d.depthDecr()
 | |
| 	d.c = 0
 | |
| }
 | |
| 
 | |
| func (d *Decoder) arrayStart(v int) int {
 | |
| 	if v != containerLenNil {
 | |
| 		d.depthIncr()
 | |
| 		d.c = containerArrayStart
 | |
| 	}
 | |
| 	return v
 | |
| }
 | |
| 
 | |
| func (d *Decoder) arrayElem() {
 | |
| 	if d.js {
 | |
| 		d.jsondriver().ReadArrayElem()
 | |
| 	}
 | |
| 	d.c = containerArrayElem
 | |
| }
 | |
| 
 | |
| func (d *Decoder) arrayEnd() {
 | |
| 	if d.js {
 | |
| 		d.jsondriver().ReadArrayEnd()
 | |
| 	}
 | |
| 	// d.d.ReadArrayEnd()
 | |
| 	d.depthDecr()
 | |
| 	d.c = 0
 | |
| }
 | |
| 
 | |
| func (d *Decoder) interfaceExtConvertAndDecode(v interface{}, ext InterfaceExt) {
 | |
| 	// var v interface{} = ext.ConvertExt(rv)
 | |
| 	// d.d.decode(&v)
 | |
| 	// ext.UpdateExt(rv, v)
 | |
| 
 | |
| 	// assume v is a pointer:
 | |
| 	// - if struct|array, pass as is to ConvertExt
 | |
| 	// - else make it non-addressable and pass to ConvertExt
 | |
| 	// - make return value from ConvertExt addressable
 | |
| 	// - decode into it
 | |
| 	// - return the interface for passing into UpdateExt.
 | |
| 	// - interface should be a pointer if struct|array, else a value
 | |
| 
 | |
| 	var s interface{}
 | |
| 	rv := reflect.ValueOf(v)
 | |
| 	rv2 := rv.Elem()
 | |
| 	rvk := rv2.Kind()
 | |
| 	if rvk == reflect.Struct || rvk == reflect.Array {
 | |
| 		s = ext.ConvertExt(v)
 | |
| 	} else {
 | |
| 		s = ext.ConvertExt(rv2i(rv2))
 | |
| 	}
 | |
| 	rv = reflect.ValueOf(s)
 | |
| 
 | |
| 	// We cannot use isDecodeable here, as the value converted may be nil,
 | |
| 	// or it may not be nil but is not addressable and thus we cannot extend it, etc.
 | |
| 	// Instead, we just ensure that the value is addressable.
 | |
| 
 | |
| 	if !rv.CanAddr() {
 | |
| 		rvk = rv.Kind()
 | |
| 		rv2 = d.oneShotAddrRV(rv.Type(), rvk)
 | |
| 		if rvk == reflect.Interface {
 | |
| 			rvSetIntf(rv2, rv)
 | |
| 		} else {
 | |
| 			rvSetDirect(rv2, rv)
 | |
| 		}
 | |
| 		rv = rv2
 | |
| 	}
 | |
| 
 | |
| 	d.decodeValue(rv, nil)
 | |
| 	ext.UpdateExt(v, rv2i(rv))
 | |
| }
 | |
| 
 | |
| func (d *Decoder) sideDecode(v interface{}, basetype reflect.Type, bs []byte) {
 | |
| 	// NewDecoderBytes(bs, d.hh).decodeValue(baseRV(v), d.h.fnNoExt(basetype))
 | |
| 
 | |
| 	defer func(rb bytesDecReader, bytes bool,
 | |
| 		c containerState, dbs decByteState, depth int16, r decReader, state interface{}) {
 | |
| 		d.rb = rb
 | |
| 		d.bytes = bytes
 | |
| 		d.c = c
 | |
| 		d.decByteState = dbs
 | |
| 		d.depth = depth
 | |
| 		d.decReader = r
 | |
| 		d.d.restoreState(state)
 | |
| 	}(d.rb, d.bytes, d.c, d.decByteState, d.depth, d.decReader, d.d.captureState())
 | |
| 
 | |
| 	// d.rb.reset(in)
 | |
| 	d.rb = bytesDecReader{bs[:len(bs):len(bs)], 0}
 | |
| 	d.bytes = true
 | |
| 	d.decReader = &d.rb
 | |
| 	d.d.resetState()
 | |
| 	d.c = 0
 | |
| 	d.decByteState = decByteStateNone
 | |
| 	d.depth = 0
 | |
| 
 | |
| 	// must call using fnNoExt
 | |
| 	d.decodeValue(baseRV(v), d.h.fnNoExt(basetype))
 | |
| }
 | |
| 
 | |
| func (d *Decoder) fauxUnionReadRawBytes(asString bool) {
 | |
| 	if asString || d.h.RawToString {
 | |
| 		d.n.v = valueTypeString
 | |
| 		// fauxUnion is only used within DecodeNaked calls; consequently, we should try to intern.
 | |
| 		d.n.s = d.stringZC(d.d.DecodeBytes(nil))
 | |
| 	} else {
 | |
| 		d.n.v = valueTypeBytes
 | |
| 		d.n.l = d.d.DecodeBytes([]byte{})
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (d *Decoder) oneShotAddrRV(rvt reflect.Type, rvk reflect.Kind) reflect.Value {
 | |
| 	if decUseTransient &&
 | |
| 		(numBoolStrSliceBitset.isset(byte(rvk)) ||
 | |
| 			((rvk == reflect.Struct || rvk == reflect.Array) &&
 | |
| 				d.h.getTypeInfo(rt2id(rvt), rvt).flagCanTransient)) {
 | |
| 		return d.perType.TransientAddrK(rvt, rvk)
 | |
| 	}
 | |
| 	return rvZeroAddrK(rvt, rvk)
 | |
| }
 | |
| 
 | |
| // --------------------------------------------------
 | |
| 
 | |
| // decSliceHelper assists when decoding into a slice, from a map or an array in the stream.
 | |
| // A slice can be set from a map or array in stream. This supports the MapBySlice interface.
 | |
| //
 | |
| // Note: if IsNil, do not call ElemContainerState.
 | |
| type decSliceHelper struct {
 | |
| 	d     *Decoder
 | |
| 	ct    valueType
 | |
| 	Array bool
 | |
| 	IsNil bool
 | |
| }
 | |
| 
 | |
| func (d *Decoder) decSliceHelperStart() (x decSliceHelper, clen int) {
 | |
| 	x.ct = d.d.ContainerType()
 | |
| 	x.d = d
 | |
| 	switch x.ct {
 | |
| 	case valueTypeNil:
 | |
| 		x.IsNil = true
 | |
| 	case valueTypeArray:
 | |
| 		x.Array = true
 | |
| 		clen = d.arrayStart(d.d.ReadArrayStart())
 | |
| 	case valueTypeMap:
 | |
| 		clen = d.mapStart(d.d.ReadMapStart())
 | |
| 		clen += clen
 | |
| 	default:
 | |
| 		d.errorf("only encoded map or array can be decoded into a slice (%d)", x.ct)
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (x decSliceHelper) End() {
 | |
| 	if x.IsNil {
 | |
| 	} else if x.Array {
 | |
| 		x.d.arrayEnd()
 | |
| 	} else {
 | |
| 		x.d.mapEnd()
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (x decSliceHelper) ElemContainerState(index int) {
 | |
| 	// Note: if isnil, clen=0, so we never call into ElemContainerState
 | |
| 
 | |
| 	if x.Array {
 | |
| 		x.d.arrayElem()
 | |
| 	} else if index&1 == 0 { // index%2 == 0 {
 | |
| 		x.d.mapElemKey()
 | |
| 	} else {
 | |
| 		x.d.mapElemValue()
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (x decSliceHelper) arrayCannotExpand(hasLen bool, lenv, j, containerLenS int) {
 | |
| 	x.d.arrayCannotExpand(lenv, j+1)
 | |
| 	// drain completely and return
 | |
| 	x.ElemContainerState(j)
 | |
| 	x.d.swallow()
 | |
| 	j++
 | |
| 	for ; x.d.containerNext(j, containerLenS, hasLen); j++ {
 | |
| 		x.ElemContainerState(j)
 | |
| 		x.d.swallow()
 | |
| 	}
 | |
| 	x.End()
 | |
| }
 | |
| 
 | |
| // decNextValueBytesHelper helps with NextValueBytes calls.
 | |
| //
 | |
| // Typical usage:
 | |
| //   - each Handle's decDriver will implement a high level nextValueBytes,
 | |
| //     which will track the current cursor, delegate to a nextValueBytesR
 | |
| //     method, and then potentially call bytesRdV at the end.
 | |
| //
 | |
| // See simple.go for typical usage model.
 | |
| type decNextValueBytesHelper struct {
 | |
| 	d *Decoder
 | |
| }
 | |
| 
 | |
| func (x decNextValueBytesHelper) append1(v *[]byte, b byte) {
 | |
| 	if *v != nil && !x.d.bytes {
 | |
| 		*v = append(*v, b)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (x decNextValueBytesHelper) appendN(v *[]byte, b ...byte) {
 | |
| 	if *v != nil && !x.d.bytes {
 | |
| 		*v = append(*v, b...)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (x decNextValueBytesHelper) appendS(v *[]byte, b string) {
 | |
| 	if *v != nil && !x.d.bytes {
 | |
| 		*v = append(*v, b...)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (x decNextValueBytesHelper) bytesRdV(v *[]byte, startpos uint) {
 | |
| 	if x.d.bytes {
 | |
| 		*v = x.d.rb.b[startpos:x.d.rb.c]
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // decNegintPosintFloatNumberHelper is used for formats that are binary
 | |
| // and have distinct ways of storing positive integers vs negative integers
 | |
| // vs floats, which are uniquely identified by the byte descriptor.
 | |
| //
 | |
| // Currently, these formats are binc, cbor and simple.
 | |
| type decNegintPosintFloatNumberHelper struct {
 | |
| 	d *Decoder
 | |
| }
 | |
| 
 | |
| func (x decNegintPosintFloatNumberHelper) uint64(ui uint64, neg, ok bool) uint64 {
 | |
| 	if ok && !neg {
 | |
| 		return ui
 | |
| 	}
 | |
| 	return x.uint64TryFloat(ok)
 | |
| }
 | |
| 
 | |
| func (x decNegintPosintFloatNumberHelper) uint64TryFloat(ok bool) (ui uint64) {
 | |
| 	if ok { // neg = true
 | |
| 		x.d.errorf("assigning negative signed value to unsigned type")
 | |
| 	}
 | |
| 	f, ok := x.d.d.decFloat()
 | |
| 	if ok && f >= 0 && noFrac64(math.Float64bits(f)) {
 | |
| 		ui = uint64(f)
 | |
| 	} else {
 | |
| 		x.d.errorf("invalid number loading uint64, with descriptor: %v", x.d.d.descBd())
 | |
| 	}
 | |
| 	return ui
 | |
| }
 | |
| 
 | |
| func decNegintPosintFloatNumberHelperInt64v(ui uint64, neg, incrIfNeg bool) (i int64) {
 | |
| 	if neg && incrIfNeg {
 | |
| 		ui++
 | |
| 	}
 | |
| 	i = chkOvf.SignedIntV(ui)
 | |
| 	if neg {
 | |
| 		i = -i
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (x decNegintPosintFloatNumberHelper) int64(ui uint64, neg, ok bool) (i int64) {
 | |
| 	if ok {
 | |
| 		return decNegintPosintFloatNumberHelperInt64v(ui, neg, x.d.cbor)
 | |
| 	}
 | |
| 	// 	return x.int64TryFloat()
 | |
| 	// }
 | |
| 	// func (x decNegintPosintFloatNumberHelper) int64TryFloat() (i int64) {
 | |
| 	f, ok := x.d.d.decFloat()
 | |
| 	if ok && noFrac64(math.Float64bits(f)) {
 | |
| 		i = int64(f)
 | |
| 	} else {
 | |
| 		x.d.errorf("invalid number loading uint64, with descriptor: %v", x.d.d.descBd())
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (x decNegintPosintFloatNumberHelper) float64(f float64, ok bool) float64 {
 | |
| 	if ok {
 | |
| 		return f
 | |
| 	}
 | |
| 	return x.float64TryInteger()
 | |
| }
 | |
| 
 | |
| func (x decNegintPosintFloatNumberHelper) float64TryInteger() float64 {
 | |
| 	ui, neg, ok := x.d.d.decInteger()
 | |
| 	if !ok {
 | |
| 		x.d.errorf("invalid descriptor for float: %v", x.d.d.descBd())
 | |
| 	}
 | |
| 	return float64(decNegintPosintFloatNumberHelperInt64v(ui, neg, x.d.cbor))
 | |
| }
 | |
| 
 | |
| // isDecodeable checks if value can be decoded into
 | |
| //
 | |
| // decode can take any reflect.Value that is a inherently addressable i.e.
 | |
| //   - non-nil chan    (we will SEND to it)
 | |
| //   - non-nil slice   (we will set its elements)
 | |
| //   - non-nil map     (we will put into it)
 | |
| //   - non-nil pointer (we can "update" it)
 | |
| //   - func: no
 | |
| //   - interface: no
 | |
| //   - array:                   if canAddr=true
 | |
| //   - any other value pointer: if canAddr=true
 | |
| func isDecodeable(rv reflect.Value) (canDecode bool, reason decNotDecodeableReason) {
 | |
| 	switch rv.Kind() {
 | |
| 	case reflect.Ptr, reflect.Slice, reflect.Chan, reflect.Map:
 | |
| 		canDecode = !rvIsNil(rv)
 | |
| 		reason = decNotDecodeableReasonNilReference
 | |
| 	case reflect.Func, reflect.Interface, reflect.Invalid, reflect.UnsafePointer:
 | |
| 		reason = decNotDecodeableReasonBadKind
 | |
| 	default:
 | |
| 		canDecode = rv.CanAddr()
 | |
| 		reason = decNotDecodeableReasonNonAddrValue
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func decByteSlice(r *decRd, clen, maxInitLen int, bs []byte) (bsOut []byte) {
 | |
| 	if clen <= 0 {
 | |
| 		bsOut = zeroByteSlice
 | |
| 	} else if cap(bs) >= clen {
 | |
| 		bsOut = bs[:clen]
 | |
| 		r.readb(bsOut)
 | |
| 	} else {
 | |
| 		var len2 int
 | |
| 		for len2 < clen {
 | |
| 			len3 := decInferLen(clen-len2, maxInitLen, 1)
 | |
| 			bs3 := bsOut
 | |
| 			bsOut = make([]byte, len2+len3)
 | |
| 			copy(bsOut, bs3)
 | |
| 			r.readb(bsOut[len2:])
 | |
| 			len2 += len3
 | |
| 		}
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // decInferLen will infer a sensible length, given the following:
 | |
| //   - clen: length wanted.
 | |
| //   - maxlen: max length to be returned.
 | |
| //     if <= 0, it is unset, and we infer it based on the unit size
 | |
| //   - unit: number of bytes for each element of the collection
 | |
| func decInferLen(clen, maxlen, unit int) int {
 | |
| 	// anecdotal testing showed increase in allocation with map length of 16.
 | |
| 	// We saw same typical alloc from 0-8, then a 20% increase at 16.
 | |
| 	// Thus, we set it to 8.
 | |
| 	const (
 | |
| 		minLenIfUnset = 8
 | |
| 		maxMem        = 256 * 1024 // 256Kb Memory
 | |
| 	)
 | |
| 
 | |
| 	// handle when maxlen is not set i.e. <= 0
 | |
| 
 | |
| 	// clen==0:           use 0
 | |
| 	// maxlen<=0, clen<0: use default
 | |
| 	// maxlen> 0, clen<0: use default
 | |
| 	// maxlen<=0, clen>0: infer maxlen, and cap on it
 | |
| 	// maxlen> 0, clen>0: cap at maxlen
 | |
| 
 | |
| 	if clen == 0 || clen == containerLenNil {
 | |
| 		return 0
 | |
| 	}
 | |
| 	if clen < 0 {
 | |
| 		// if unspecified, return 64 for bytes, ... 8 for uint64, ... and everything else
 | |
| 		clen = 64 / unit
 | |
| 		if clen > minLenIfUnset {
 | |
| 			return clen
 | |
| 		}
 | |
| 		return minLenIfUnset
 | |
| 	}
 | |
| 	if unit <= 0 {
 | |
| 		return clen
 | |
| 	}
 | |
| 	if maxlen <= 0 {
 | |
| 		maxlen = maxMem / unit
 | |
| 	}
 | |
| 	if clen < maxlen {
 | |
| 		return clen
 | |
| 	}
 | |
| 	return maxlen
 | |
| }
 |