1653 lines
44 KiB
Go
1653 lines
44 KiB
Go
//go:build notmono || codec.notmono
|
|
|
|
// Copyright (c) 2012-2020 Ugorji Nwoke. All rights reserved.
|
|
// Use of this source code is governed by a MIT license found in the LICENSE file.
|
|
|
|
package codec
|
|
|
|
import (
|
|
"encoding"
|
|
"io"
|
|
"reflect"
|
|
"slices"
|
|
"sort"
|
|
"strconv"
|
|
"sync"
|
|
"time"
|
|
)
|
|
|
|
type helperEncDriver[T encDriver] struct{}
|
|
|
|
// encFn encapsulates the captured variables and the encode function.
|
|
// This way, we only do some calculations one times, and pass to the
|
|
// code block that should be called (encapsulated in a function)
|
|
// instead of executing the checks every time.
|
|
type encFn[T encDriver] struct {
|
|
i encFnInfo
|
|
fe func(*encoder[T], *encFnInfo, reflect.Value)
|
|
// _ [1]uint64 // padding (cache-aligned)
|
|
}
|
|
|
|
type encRtidFn[T encDriver] struct {
|
|
rtid uintptr
|
|
fn *encFn[T]
|
|
}
|
|
|
|
// Encoder writes an object to an output stream in a supported format.
|
|
//
|
|
// Encoder is NOT safe for concurrent use i.e. a Encoder cannot be used
|
|
// concurrently in multiple goroutines.
|
|
//
|
|
// However, as Encoder could be allocation heavy to initialize, a Reset method is provided
|
|
// so its state can be reused to decode new input streams repeatedly.
|
|
// This is the idiomatic way to use.
|
|
type encoder[T encDriver] struct {
|
|
dh helperEncDriver[T]
|
|
fp *fastpathEs[T]
|
|
e T
|
|
encoderBase
|
|
}
|
|
|
|
func (e *encoder[T]) rawExt(_ *encFnInfo, rv reflect.Value) {
|
|
if re := rv2i(rv).(*RawExt); re == nil {
|
|
e.e.EncodeNil()
|
|
} else {
|
|
e.e.EncodeRawExt(re)
|
|
}
|
|
}
|
|
|
|
func (e *encoder[T]) ext(f *encFnInfo, rv reflect.Value) {
|
|
e.e.EncodeExt(rv2i(rv), f.ti.rt, f.xfTag, f.xfFn)
|
|
}
|
|
|
|
func (e *encoder[T]) selferMarshal(_ *encFnInfo, rv reflect.Value) {
|
|
rv2i(rv).(Selfer).CodecEncodeSelf(&Encoder{e})
|
|
}
|
|
|
|
func (e *encoder[T]) binaryMarshal(_ *encFnInfo, rv reflect.Value) {
|
|
bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
|
|
e.marshalRaw(bs, fnerr)
|
|
}
|
|
|
|
func (e *encoder[T]) textMarshal(_ *encFnInfo, rv reflect.Value) {
|
|
bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
|
|
e.marshalUtf8(bs, fnerr)
|
|
}
|
|
|
|
func (e *encoder[T]) jsonMarshal(_ *encFnInfo, rv reflect.Value) {
|
|
bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
|
|
e.marshalAsis(bs, fnerr)
|
|
}
|
|
|
|
func (e *encoder[T]) raw(_ *encFnInfo, rv reflect.Value) {
|
|
e.rawBytes(rv2i(rv).(Raw))
|
|
}
|
|
|
|
func (e *encoder[T]) encodeComplex64(v complex64) {
|
|
if imag(v) != 0 {
|
|
halt.errorf("cannot encode complex number: %v, with imaginary values: %v", any(v), any(imag(v)))
|
|
}
|
|
e.e.EncodeFloat32(real(v))
|
|
}
|
|
|
|
func (e *encoder[T]) encodeComplex128(v complex128) {
|
|
if imag(v) != 0 {
|
|
halt.errorf("cannot encode complex number: %v, with imaginary values: %v", any(v), any(imag(v)))
|
|
}
|
|
e.e.EncodeFloat64(real(v))
|
|
}
|
|
|
|
func (e *encoder[T]) kBool(_ *encFnInfo, rv reflect.Value) {
|
|
e.e.EncodeBool(rvGetBool(rv))
|
|
}
|
|
|
|
func (e *encoder[T]) kTime(_ *encFnInfo, rv reflect.Value) {
|
|
e.e.EncodeTime(rvGetTime(rv))
|
|
}
|
|
|
|
func (e *encoder[T]) kString(_ *encFnInfo, rv reflect.Value) {
|
|
e.e.EncodeString(rvGetString(rv))
|
|
}
|
|
|
|
func (e *encoder[T]) kFloat32(_ *encFnInfo, rv reflect.Value) {
|
|
e.e.EncodeFloat32(rvGetFloat32(rv))
|
|
}
|
|
|
|
func (e *encoder[T]) kFloat64(_ *encFnInfo, rv reflect.Value) {
|
|
e.e.EncodeFloat64(rvGetFloat64(rv))
|
|
}
|
|
|
|
func (e *encoder[T]) kComplex64(_ *encFnInfo, rv reflect.Value) {
|
|
e.encodeComplex64(rvGetComplex64(rv))
|
|
}
|
|
|
|
func (e *encoder[T]) kComplex128(_ *encFnInfo, rv reflect.Value) {
|
|
e.encodeComplex128(rvGetComplex128(rv))
|
|
}
|
|
|
|
func (e *encoder[T]) kInt(_ *encFnInfo, rv reflect.Value) {
|
|
e.e.EncodeInt(int64(rvGetInt(rv)))
|
|
}
|
|
|
|
func (e *encoder[T]) kInt8(_ *encFnInfo, rv reflect.Value) {
|
|
e.e.EncodeInt(int64(rvGetInt8(rv)))
|
|
}
|
|
|
|
func (e *encoder[T]) kInt16(_ *encFnInfo, rv reflect.Value) {
|
|
e.e.EncodeInt(int64(rvGetInt16(rv)))
|
|
}
|
|
|
|
func (e *encoder[T]) kInt32(_ *encFnInfo, rv reflect.Value) {
|
|
e.e.EncodeInt(int64(rvGetInt32(rv)))
|
|
}
|
|
|
|
func (e *encoder[T]) kInt64(_ *encFnInfo, rv reflect.Value) {
|
|
e.e.EncodeInt(int64(rvGetInt64(rv)))
|
|
}
|
|
|
|
func (e *encoder[T]) kUint(_ *encFnInfo, rv reflect.Value) {
|
|
e.e.EncodeUint(uint64(rvGetUint(rv)))
|
|
}
|
|
|
|
func (e *encoder[T]) kUint8(_ *encFnInfo, rv reflect.Value) {
|
|
e.e.EncodeUint(uint64(rvGetUint8(rv)))
|
|
}
|
|
|
|
func (e *encoder[T]) kUint16(_ *encFnInfo, rv reflect.Value) {
|
|
e.e.EncodeUint(uint64(rvGetUint16(rv)))
|
|
}
|
|
|
|
func (e *encoder[T]) kUint32(_ *encFnInfo, rv reflect.Value) {
|
|
e.e.EncodeUint(uint64(rvGetUint32(rv)))
|
|
}
|
|
|
|
func (e *encoder[T]) kUint64(_ *encFnInfo, rv reflect.Value) {
|
|
e.e.EncodeUint(uint64(rvGetUint64(rv)))
|
|
}
|
|
|
|
func (e *encoder[T]) kUintptr(_ *encFnInfo, rv reflect.Value) {
|
|
e.e.EncodeUint(uint64(rvGetUintptr(rv)))
|
|
}
|
|
|
|
func (e *encoder[T]) kSeqFn(rt reflect.Type) (fn *encFn[T]) {
|
|
// if kind is reflect.Interface, do not pre-determine the encoding type,
|
|
// because preEncodeValue may break it down to a concrete type and kInterface will bomb.
|
|
if rt = baseRT(rt); rt.Kind() != reflect.Interface {
|
|
fn = e.fn(rt)
|
|
}
|
|
return
|
|
}
|
|
|
|
func (e *encoder[T]) kArrayWMbs(rv reflect.Value, ti *typeInfo, isSlice bool) {
|
|
var l int
|
|
if isSlice {
|
|
l = rvLenSlice(rv)
|
|
} else {
|
|
l = rv.Len()
|
|
}
|
|
if l == 0 {
|
|
e.e.WriteMapEmpty()
|
|
return
|
|
}
|
|
e.haltOnMbsOddLen(l)
|
|
e.mapStart(l >> 1) // e.mapStart(l / 2)
|
|
|
|
var fn *encFn[T]
|
|
builtin := ti.tielem.flagEncBuiltin
|
|
if !builtin {
|
|
fn = e.kSeqFn(ti.elem)
|
|
}
|
|
|
|
// simulate do...while, since we already handled case of 0-length
|
|
j := 0
|
|
e.c = containerMapKey
|
|
e.e.WriteMapElemKey(true)
|
|
for {
|
|
rvv := rvArrayIndex(rv, j, ti, isSlice)
|
|
if builtin {
|
|
e.encodeIB(rv2i(baseRVRV(rvv)))
|
|
} else {
|
|
e.encodeValue(rvv, fn)
|
|
}
|
|
j++
|
|
if j == l {
|
|
break
|
|
}
|
|
if j&1 == 0 { // j%2 == 0 {
|
|
e.c = containerMapKey
|
|
e.e.WriteMapElemKey(false)
|
|
} else {
|
|
e.mapElemValue()
|
|
}
|
|
}
|
|
e.c = 0
|
|
e.e.WriteMapEnd()
|
|
|
|
// for j := 0; j < l; j++ {
|
|
// if j&1 == 0 { // j%2 == 0 {
|
|
// e.mapElemKey(j == 0)
|
|
// } else {
|
|
// e.mapElemValue()
|
|
// }
|
|
// rvv := rvSliceIndex(rv, j, ti)
|
|
// if builtin {
|
|
// e.encode(rv2i(baseRVRV(rvv)))
|
|
// } else {
|
|
// e.encodeValue(rvv, fn)
|
|
// }
|
|
// }
|
|
// e.mapEnd()
|
|
}
|
|
|
|
func (e *encoder[T]) kArrayW(rv reflect.Value, ti *typeInfo, isSlice bool) {
|
|
var l int
|
|
if isSlice {
|
|
l = rvLenSlice(rv)
|
|
} else {
|
|
l = rv.Len()
|
|
}
|
|
if l <= 0 {
|
|
e.e.WriteArrayEmpty()
|
|
return
|
|
}
|
|
e.arrayStart(l)
|
|
|
|
var fn *encFn[T]
|
|
if !ti.tielem.flagEncBuiltin {
|
|
fn = e.kSeqFn(ti.elem)
|
|
}
|
|
|
|
j := 0
|
|
e.c = containerArrayElem
|
|
e.e.WriteArrayElem(true)
|
|
builtin := ti.tielem.flagEncBuiltin
|
|
for {
|
|
rvv := rvArrayIndex(rv, j, ti, isSlice)
|
|
if builtin {
|
|
e.encodeIB(rv2i(baseRVRV(rvv)))
|
|
} else {
|
|
e.encodeValue(rvv, fn)
|
|
}
|
|
j++
|
|
if j == l {
|
|
break
|
|
}
|
|
e.c = containerArrayElem
|
|
e.e.WriteArrayElem(false)
|
|
}
|
|
|
|
// if ti.tielem.flagEncBuiltin {
|
|
// for j := 0; j < l; j++ {
|
|
// e.arrayElem()
|
|
// e.encode(rv2i(baseRVRV(rIndex(rv, j, ti))))
|
|
// }
|
|
// } else {
|
|
// fn := e.kSeqFn(ti.elem)
|
|
// for j := 0; j < l; j++ {
|
|
// e.arrayElem()
|
|
// e.encodeValue(rvArrayIndex(rv, j, ti), fn)
|
|
// }
|
|
// }
|
|
|
|
e.c = 0
|
|
e.e.WriteArrayEnd()
|
|
}
|
|
|
|
func (e *encoder[T]) kChan(f *encFnInfo, rv reflect.Value) {
|
|
if f.ti.chandir&uint8(reflect.RecvDir) == 0 {
|
|
halt.errorStr("send-only channel cannot be encoded")
|
|
}
|
|
if !f.ti.mbs && uint8TypId == rt2id(f.ti.elem) {
|
|
e.kSliceBytesChan(rv)
|
|
return
|
|
}
|
|
rtslice := reflect.SliceOf(f.ti.elem)
|
|
rv = chanToSlice(rv, rtslice, e.h.ChanRecvTimeout)
|
|
ti := e.h.getTypeInfo(rt2id(rtslice), rtslice)
|
|
if f.ti.mbs {
|
|
e.kArrayWMbs(rv, ti, true)
|
|
} else {
|
|
e.kArrayW(rv, ti, true)
|
|
}
|
|
}
|
|
|
|
func (e *encoder[T]) kSlice(f *encFnInfo, rv reflect.Value) {
|
|
if f.ti.mbs {
|
|
e.kArrayWMbs(rv, f.ti, true)
|
|
} else if f.ti.rtid == uint8SliceTypId || uint8TypId == rt2id(f.ti.elem) {
|
|
// 'uint8TypId == rt2id(f.ti.elem)' checks types having underlying []byte
|
|
e.e.EncodeBytes(rvGetBytes(rv))
|
|
} else {
|
|
e.kArrayW(rv, f.ti, true)
|
|
}
|
|
}
|
|
|
|
func (e *encoder[T]) kArray(f *encFnInfo, rv reflect.Value) {
|
|
if f.ti.mbs {
|
|
e.kArrayWMbs(rv, f.ti, false)
|
|
} else if handleBytesWithinKArray && uint8TypId == rt2id(f.ti.elem) {
|
|
e.e.EncodeStringBytesRaw(rvGetArrayBytes(rv, nil)) // bytes from array never nil
|
|
} else {
|
|
e.kArrayW(rv, f.ti, false)
|
|
}
|
|
}
|
|
|
|
func (e *encoder[T]) kSliceBytesChan(rv reflect.Value) {
|
|
// do not use range, so that the number of elements encoded
|
|
// does not change, and encoding does not hang waiting on someone to close chan.
|
|
|
|
bs0 := e.blist.peek(32, true)
|
|
bs := bs0
|
|
|
|
irv := rv2i(rv)
|
|
ch, ok := irv.(<-chan byte)
|
|
if !ok {
|
|
ch = irv.(chan byte)
|
|
}
|
|
|
|
L1:
|
|
switch timeout := e.h.ChanRecvTimeout; {
|
|
case timeout == 0: // only consume available
|
|
for {
|
|
select {
|
|
case b := <-ch:
|
|
bs = append(bs, b)
|
|
default:
|
|
break L1
|
|
}
|
|
}
|
|
case timeout > 0: // consume until timeout
|
|
tt := time.NewTimer(timeout)
|
|
for {
|
|
select {
|
|
case b := <-ch:
|
|
bs = append(bs, b)
|
|
case <-tt.C:
|
|
// close(tt.C)
|
|
break L1
|
|
}
|
|
}
|
|
default: // consume until close
|
|
for b := range ch {
|
|
bs = append(bs, b)
|
|
}
|
|
}
|
|
|
|
e.e.EncodeBytes(bs)
|
|
e.blist.put(bs)
|
|
if !byteSliceSameData(bs0, bs) {
|
|
e.blist.put(bs0)
|
|
}
|
|
}
|
|
|
|
func (e *encoder[T]) kStructFieldKey(keyType valueType, encName string) {
|
|
// use if (not switch) block, so that branch prediction picks valueTypeString first
|
|
if keyType == valueTypeString {
|
|
e.e.EncodeString(encName)
|
|
} else if keyType == valueTypeInt {
|
|
e.e.EncodeInt(must.Int(strconv.ParseInt(encName, 10, 64)))
|
|
} else if keyType == valueTypeUint {
|
|
e.e.EncodeUint(must.Uint(strconv.ParseUint(encName, 10, 64)))
|
|
} else if keyType == valueTypeFloat {
|
|
e.e.EncodeFloat64(must.Float(strconv.ParseFloat(encName, 64)))
|
|
} else {
|
|
halt.errorStr2("invalid struct key type: ", keyType.String())
|
|
}
|
|
// e.dh.encStructFieldKey(e.e, encName, keyType, encNameAsciiAlphaNum, e.js)
|
|
}
|
|
|
|
func (e *encoder[T]) kStructSimple(f *encFnInfo, rv reflect.Value) {
|
|
_ = e.e // early asserts e, e.e are not nil once
|
|
tisfi := f.ti.sfi.source()
|
|
|
|
// To bypass encodeValue, we need to handle cases where
|
|
// the field is an interface kind. To do this, we need to handle an
|
|
// interface or a pointer to an interface differently.
|
|
//
|
|
// Easiest to just delegate to encodeValue.
|
|
|
|
chkCirRef := e.h.CheckCircularRef
|
|
var si *structFieldInfo
|
|
var j int
|
|
// use value of chkCirRef ie if true, then send the addr of the value
|
|
if f.ti.toArray || e.h.StructToArray { // toArray
|
|
if len(tisfi) == 0 {
|
|
e.e.WriteArrayEmpty()
|
|
return
|
|
}
|
|
e.arrayStart(len(tisfi))
|
|
for j, si = range tisfi {
|
|
e.c = containerArrayElem
|
|
e.e.WriteArrayElem(j == 0)
|
|
if si.encBuiltin {
|
|
e.encodeIB(rv2i(si.fieldNoAlloc(rv, true)))
|
|
} else {
|
|
e.encodeValue(si.fieldNoAlloc(rv, !chkCirRef), nil)
|
|
}
|
|
}
|
|
e.c = 0
|
|
e.e.WriteArrayEnd()
|
|
} else {
|
|
if len(tisfi) == 0 {
|
|
e.e.WriteMapEmpty()
|
|
return
|
|
}
|
|
if e.h.Canonical {
|
|
tisfi = f.ti.sfi.sorted()
|
|
}
|
|
e.mapStart(len(tisfi))
|
|
for j, si = range tisfi {
|
|
e.c = containerMapKey
|
|
e.e.WriteMapElemKey(j == 0)
|
|
e.e.EncodeStringNoEscape4Json(si.encName)
|
|
e.mapElemValue()
|
|
if si.encBuiltin {
|
|
e.encodeIB(rv2i(si.fieldNoAlloc(rv, true)))
|
|
} else {
|
|
e.encodeValue(si.fieldNoAlloc(rv, !chkCirRef), nil)
|
|
}
|
|
}
|
|
e.c = 0
|
|
e.e.WriteMapEnd()
|
|
}
|
|
}
|
|
|
|
func (e *encoder[T]) kStruct(f *encFnInfo, rv reflect.Value) {
|
|
_ = e.e // early asserts e, e.e are not nil once
|
|
ti := f.ti
|
|
toMap := !(ti.toArray || e.h.StructToArray)
|
|
var mf map[string]interface{}
|
|
if ti.flagMissingFielder {
|
|
toMap = true
|
|
mf = rv2i(rv).(MissingFielder).CodecMissingFields()
|
|
} else if ti.flagMissingFielderPtr {
|
|
toMap = true
|
|
if rv.CanAddr() {
|
|
mf = rv2i(rvAddr(rv, ti.ptr)).(MissingFielder).CodecMissingFields()
|
|
} else {
|
|
mf = rv2i(e.addrRV(rv, ti.rt, ti.ptr)).(MissingFielder).CodecMissingFields()
|
|
}
|
|
}
|
|
newlen := len(mf)
|
|
tisfi := ti.sfi.source()
|
|
newlen += len(tisfi)
|
|
|
|
var fkvs = e.slist.get(newlen)[:newlen]
|
|
|
|
recur := e.h.RecursiveEmptyCheck
|
|
chkCirRef := e.h.CheckCircularRef
|
|
|
|
var xlen int
|
|
|
|
var kv sfiRv
|
|
var j int
|
|
var sf encStructFieldObj
|
|
if toMap {
|
|
newlen = 0
|
|
if e.h.Canonical {
|
|
tisfi = f.ti.sfi.sorted()
|
|
}
|
|
for _, si := range tisfi {
|
|
// kv.r = si.path.field(rv, false, si.encBuiltin || !chkCirRef)
|
|
// if si.omitEmpty && isEmptyValue(kv.r, e.h.TypeInfos, recur) {
|
|
// continue
|
|
// }
|
|
if si.omitEmpty {
|
|
kv.r = si.fieldNoAlloc(rv, false) // test actual field val
|
|
if isEmptyValue(kv.r, e.h.TypeInfos, recur) {
|
|
continue
|
|
}
|
|
} else {
|
|
kv.r = si.fieldNoAlloc(rv, si.encBuiltin || !chkCirRef)
|
|
}
|
|
kv.v = si
|
|
fkvs[newlen] = kv
|
|
newlen++
|
|
}
|
|
|
|
var mf2s []stringIntf
|
|
if len(mf) != 0 {
|
|
mf2s = make([]stringIntf, 0, len(mf))
|
|
for k, v := range mf {
|
|
if k == "" {
|
|
continue
|
|
}
|
|
if ti.infoFieldOmitempty && isEmptyValue(reflect.ValueOf(v), e.h.TypeInfos, recur) {
|
|
continue
|
|
}
|
|
mf2s = append(mf2s, stringIntf{k, v})
|
|
}
|
|
}
|
|
|
|
xlen = newlen + len(mf2s)
|
|
if xlen == 0 {
|
|
e.e.WriteMapEmpty()
|
|
goto END
|
|
}
|
|
|
|
e.mapStart(xlen)
|
|
|
|
// When there are missing fields, and Canonical flag is set,
|
|
// we cannot have the missing fields and struct fields sorted independently.
|
|
// We have to capture them together and sort as a unit.
|
|
|
|
if len(mf2s) != 0 && e.h.Canonical {
|
|
mf2w := make([]encStructFieldObj, newlen+len(mf2s))
|
|
for j = 0; j < newlen; j++ {
|
|
kv = fkvs[j]
|
|
mf2w[j] = encStructFieldObj{kv.v.encName, kv.r, nil, true,
|
|
!kv.v.encNameEscape4Json, kv.v.encBuiltin}
|
|
}
|
|
for _, v := range mf2s {
|
|
mf2w[j] = encStructFieldObj{v.v, reflect.Value{}, v.i, false, false, false}
|
|
j++
|
|
}
|
|
sort.Sort((encStructFieldObjSlice)(mf2w))
|
|
for j, sf = range mf2w {
|
|
e.c = containerMapKey
|
|
e.e.WriteMapElemKey(j == 0)
|
|
if ti.keyType == valueTypeString && sf.noEsc4json {
|
|
e.e.EncodeStringNoEscape4Json(sf.key)
|
|
} else {
|
|
e.kStructFieldKey(ti.keyType, sf.key)
|
|
}
|
|
e.mapElemValue()
|
|
if sf.isRv {
|
|
if sf.builtin {
|
|
e.encodeIB(rv2i(baseRVRV(sf.rv)))
|
|
} else {
|
|
e.encodeValue(sf.rv, nil)
|
|
}
|
|
} else {
|
|
if !e.encodeBuiltin(sf.intf) {
|
|
e.encodeR(reflect.ValueOf(sf.intf))
|
|
}
|
|
//e.encodeI(sf.intf) // MARKER inlined
|
|
}
|
|
}
|
|
} else {
|
|
keytyp := ti.keyType
|
|
for j = 0; j < newlen; j++ {
|
|
kv = fkvs[j]
|
|
e.c = containerMapKey
|
|
e.e.WriteMapElemKey(j == 0)
|
|
if ti.keyType == valueTypeString && !kv.v.encNameEscape4Json {
|
|
e.e.EncodeStringNoEscape4Json(kv.v.encName)
|
|
} else {
|
|
e.kStructFieldKey(keytyp, kv.v.encName)
|
|
}
|
|
e.mapElemValue()
|
|
if kv.v.encBuiltin {
|
|
e.encodeIB(rv2i(baseRVRV(kv.r)))
|
|
} else {
|
|
e.encodeValue(kv.r, nil)
|
|
}
|
|
}
|
|
for _, v := range mf2s {
|
|
e.c = containerMapKey
|
|
e.e.WriteMapElemKey(j == 0)
|
|
e.kStructFieldKey(keytyp, v.v)
|
|
e.mapElemValue()
|
|
if !e.encodeBuiltin(v.i) {
|
|
e.encodeR(reflect.ValueOf(v.i))
|
|
}
|
|
// e.encodeI(v.i) // MARKER inlined
|
|
j++
|
|
}
|
|
}
|
|
|
|
e.c = 0
|
|
e.e.WriteMapEnd()
|
|
} else {
|
|
newlen = len(tisfi)
|
|
for i, si := range tisfi { // use unsorted array (to match sequence in struct)
|
|
// kv.r = si.path.field(rv, false, si.encBuiltin || !chkCirRef)
|
|
// kv.r = si.path.field(rv, false, !si.omitEmpty || si.encBuiltin || !chkCirRef)
|
|
if si.omitEmpty {
|
|
// use the zero value.
|
|
// if a reference or struct, set to nil (so you do not output too much)
|
|
kv.r = si.fieldNoAlloc(rv, false) // test actual field val
|
|
if isEmptyContainerValue(kv.r, e.h.TypeInfos, recur) {
|
|
kv.r = reflect.Value{} //encode as nil
|
|
}
|
|
} else {
|
|
kv.r = si.fieldNoAlloc(rv, si.encBuiltin || !chkCirRef)
|
|
}
|
|
kv.v = si
|
|
fkvs[i] = kv
|
|
}
|
|
|
|
if newlen == 0 {
|
|
e.e.WriteArrayEmpty()
|
|
goto END
|
|
}
|
|
|
|
// encode it all
|
|
e.arrayStart(newlen)
|
|
for j = 0; j < newlen; j++ {
|
|
e.c = containerArrayElem
|
|
e.e.WriteArrayElem(j == 0)
|
|
kv = fkvs[j]
|
|
if !kv.r.IsValid() {
|
|
e.e.EncodeNil()
|
|
} else if kv.v.encBuiltin {
|
|
e.encodeIB(rv2i(baseRVRV(kv.r)))
|
|
} else {
|
|
e.encodeValue(kv.r, nil)
|
|
}
|
|
}
|
|
e.c = 0
|
|
e.e.WriteArrayEnd()
|
|
}
|
|
|
|
END:
|
|
// do not use defer. Instead, use explicit pool return at end of function.
|
|
// defer has a cost we are trying to avoid.
|
|
// If there is a panic and these slices are not returned, it is ok.
|
|
e.slist.put(fkvs)
|
|
}
|
|
|
|
func (e *encoder[T]) kMap(f *encFnInfo, rv reflect.Value) {
|
|
_ = e.e // early asserts e, e.e are not nil once
|
|
l := rvLenMap(rv)
|
|
if l == 0 {
|
|
e.e.WriteMapEmpty()
|
|
return
|
|
}
|
|
e.mapStart(l)
|
|
|
|
// determine the underlying key and val encFn's for the map.
|
|
// This eliminates some work which is done for each loop iteration i.e.
|
|
// rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
|
|
//
|
|
// However, if kind is reflect.Interface, do not pre-determine the
|
|
// encoding type, because preEncodeValue may break it down to
|
|
// a concrete type and kInterface will bomb.
|
|
|
|
var keyFn, valFn *encFn[T]
|
|
|
|
ktypeKind := reflect.Kind(f.ti.keykind)
|
|
vtypeKind := reflect.Kind(f.ti.elemkind)
|
|
|
|
rtval := f.ti.elem
|
|
rtvalkind := vtypeKind
|
|
for rtvalkind == reflect.Ptr {
|
|
rtval = rtval.Elem()
|
|
rtvalkind = rtval.Kind()
|
|
}
|
|
if rtvalkind != reflect.Interface {
|
|
valFn = e.fn(rtval)
|
|
}
|
|
|
|
var rvv = mapAddrLoopvarRV(f.ti.elem, vtypeKind)
|
|
|
|
rtkey := f.ti.key
|
|
var keyTypeIsString = stringTypId == rt2id(rtkey) // rtkeyid
|
|
if keyTypeIsString {
|
|
keyFn = e.fn(rtkey)
|
|
} else {
|
|
for rtkey.Kind() == reflect.Ptr {
|
|
rtkey = rtkey.Elem()
|
|
}
|
|
if rtkey.Kind() != reflect.Interface {
|
|
keyFn = e.fn(rtkey)
|
|
}
|
|
}
|
|
|
|
if e.h.Canonical {
|
|
e.kMapCanonical(f.ti, rv, rvv, keyFn, valFn)
|
|
e.c = 0
|
|
e.e.WriteMapEnd()
|
|
return
|
|
}
|
|
|
|
var rvk = mapAddrLoopvarRV(f.ti.key, ktypeKind)
|
|
|
|
var it mapIter
|
|
mapRange(&it, rv, rvk, rvv, true)
|
|
|
|
kbuiltin := f.ti.tikey.flagEncBuiltin
|
|
vbuiltin := f.ti.tielem.flagEncBuiltin
|
|
for j := 0; it.Next(); j++ {
|
|
rv = it.Key()
|
|
e.c = containerMapKey
|
|
e.e.WriteMapElemKey(j == 0)
|
|
if keyTypeIsString {
|
|
e.e.EncodeString(rvGetString(rv))
|
|
} else if kbuiltin {
|
|
e.encodeIB(rv2i(baseRVRV(rv)))
|
|
} else {
|
|
e.encodeValue(rv, keyFn)
|
|
}
|
|
e.mapElemValue()
|
|
rv = it.Value()
|
|
if vbuiltin {
|
|
e.encodeIB(rv2i(baseRVRV(rv)))
|
|
} else {
|
|
e.encodeValue(it.Value(), valFn)
|
|
}
|
|
}
|
|
it.Done()
|
|
|
|
e.c = 0
|
|
e.e.WriteMapEnd()
|
|
}
|
|
|
|
func (e *encoder[T]) kMapCanonical(ti *typeInfo, rv, rvv reflect.Value, keyFn, valFn *encFn[T]) {
|
|
_ = e.e // early asserts e, e.e are not nil once
|
|
// The base kind of the type of the map key is sufficient for ordering.
|
|
// We only do out of band if that kind is not ordered (number or string), bool or time.Time.
|
|
// If the key is a predeclared type, directly call methods on encDriver e.g. EncodeString
|
|
// but if not, call encodeValue, in case it has an extension registered or otherwise.
|
|
rtkey := ti.key
|
|
rtkeydecl := rtkey.PkgPath() == "" && rtkey.Name() != "" // key type is predeclared
|
|
|
|
mks := rv.MapKeys()
|
|
rtkeyKind := rtkey.Kind()
|
|
mparams := getMapReqParams(ti)
|
|
|
|
// kfast := mapKeyFastKindFor(rtkeyKind)
|
|
// visindirect := mapStoresElemIndirect(uintptr(ti.elemsize))
|
|
// visref := refBitset.isset(ti.elemkind)
|
|
|
|
switch rtkeyKind {
|
|
case reflect.Bool:
|
|
// though bool keys make no sense in a map, it *could* happen.
|
|
// in that case, we MUST support it in reflection mode,
|
|
// as that is the fallback for even codecgen and others.
|
|
|
|
// sort the keys so that false comes before true
|
|
// ie if 2 keys in order (true, false), then swap them
|
|
if len(mks) == 2 && mks[0].Bool() {
|
|
mks[0], mks[1] = mks[1], mks[0]
|
|
}
|
|
for i := range mks {
|
|
e.c = containerMapKey
|
|
e.e.WriteMapElemKey(i == 0)
|
|
if rtkeydecl {
|
|
e.e.EncodeBool(mks[i].Bool())
|
|
} else {
|
|
e.encodeValueNonNil(mks[i], keyFn)
|
|
}
|
|
e.mapElemValue()
|
|
e.encodeValue(mapGet(rv, mks[i], rvv, mparams), valFn)
|
|
}
|
|
case reflect.String:
|
|
mksv := make([]orderedRv[string], len(mks))
|
|
for i, k := range mks {
|
|
v := &mksv[i]
|
|
v.r = k
|
|
v.v = rvGetString(k)
|
|
}
|
|
slices.SortFunc(mksv, cmpOrderedRv)
|
|
for i := range mksv {
|
|
e.c = containerMapKey
|
|
e.e.WriteMapElemKey(i == 0)
|
|
if rtkeydecl {
|
|
e.e.EncodeString(mksv[i].v)
|
|
} else {
|
|
e.encodeValueNonNil(mksv[i].r, keyFn)
|
|
}
|
|
e.mapElemValue()
|
|
e.encodeValue(mapGet(rv, mksv[i].r, rvv, mparams), valFn)
|
|
}
|
|
case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
|
|
mksv := make([]orderedRv[uint64], len(mks))
|
|
for i, k := range mks {
|
|
v := &mksv[i]
|
|
v.r = k
|
|
v.v = k.Uint()
|
|
}
|
|
slices.SortFunc(mksv, cmpOrderedRv)
|
|
for i := range mksv {
|
|
e.c = containerMapKey
|
|
e.e.WriteMapElemKey(i == 0)
|
|
if rtkeydecl {
|
|
e.e.EncodeUint(mksv[i].v)
|
|
} else {
|
|
e.encodeValueNonNil(mksv[i].r, keyFn)
|
|
}
|
|
e.mapElemValue()
|
|
e.encodeValue(mapGet(rv, mksv[i].r, rvv, mparams), valFn)
|
|
}
|
|
case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
|
|
mksv := make([]orderedRv[int64], len(mks))
|
|
for i, k := range mks {
|
|
v := &mksv[i]
|
|
v.r = k
|
|
v.v = k.Int()
|
|
}
|
|
slices.SortFunc(mksv, cmpOrderedRv)
|
|
for i := range mksv {
|
|
e.c = containerMapKey
|
|
e.e.WriteMapElemKey(i == 0)
|
|
if rtkeydecl {
|
|
e.e.EncodeInt(mksv[i].v)
|
|
} else {
|
|
e.encodeValueNonNil(mksv[i].r, keyFn)
|
|
}
|
|
e.mapElemValue()
|
|
e.encodeValue(mapGet(rv, mksv[i].r, rvv, mparams), valFn)
|
|
}
|
|
case reflect.Float32:
|
|
mksv := make([]orderedRv[float64], len(mks))
|
|
for i, k := range mks {
|
|
v := &mksv[i]
|
|
v.r = k
|
|
v.v = k.Float()
|
|
}
|
|
slices.SortFunc(mksv, cmpOrderedRv)
|
|
for i := range mksv {
|
|
e.c = containerMapKey
|
|
e.e.WriteMapElemKey(i == 0)
|
|
if rtkeydecl {
|
|
e.e.EncodeFloat32(float32(mksv[i].v))
|
|
} else {
|
|
e.encodeValueNonNil(mksv[i].r, keyFn)
|
|
}
|
|
e.mapElemValue()
|
|
e.encodeValue(mapGet(rv, mksv[i].r, rvv, mparams), valFn)
|
|
}
|
|
case reflect.Float64:
|
|
mksv := make([]orderedRv[float64], len(mks))
|
|
for i, k := range mks {
|
|
v := &mksv[i]
|
|
v.r = k
|
|
v.v = k.Float()
|
|
}
|
|
slices.SortFunc(mksv, cmpOrderedRv)
|
|
for i := range mksv {
|
|
e.c = containerMapKey
|
|
e.e.WriteMapElemKey(i == 0)
|
|
if rtkeydecl {
|
|
e.e.EncodeFloat64(mksv[i].v)
|
|
} else {
|
|
e.encodeValueNonNil(mksv[i].r, keyFn)
|
|
}
|
|
e.mapElemValue()
|
|
e.encodeValue(mapGet(rv, mksv[i].r, rvv, mparams), valFn)
|
|
}
|
|
default:
|
|
if rtkey == timeTyp {
|
|
mksv := make([]timeRv, len(mks))
|
|
for i, k := range mks {
|
|
v := &mksv[i]
|
|
v.r = k
|
|
v.v = rv2i(k).(time.Time)
|
|
}
|
|
slices.SortFunc(mksv, cmpTimeRv)
|
|
for i := range mksv {
|
|
e.c = containerMapKey
|
|
e.e.WriteMapElemKey(i == 0)
|
|
e.e.EncodeTime(mksv[i].v)
|
|
e.mapElemValue()
|
|
e.encodeValue(mapGet(rv, mksv[i].r, rvv, mparams), valFn)
|
|
}
|
|
break
|
|
}
|
|
|
|
// out-of-band
|
|
// first encode each key to a []byte first, then sort them, then record
|
|
bs0 := e.blist.get(len(mks) * 16)
|
|
mksv := bs0
|
|
mksbv := make([]bytesRv, len(mks))
|
|
|
|
sideEncode(e.hh, &e.h.sideEncPool, func(se encoderI) {
|
|
se.ResetBytes(&mksv)
|
|
for i, k := range mks {
|
|
v := &mksbv[i]
|
|
l := len(mksv)
|
|
se.setContainerState(containerMapKey)
|
|
se.encodeR(baseRVRV(k))
|
|
se.atEndOfEncode()
|
|
se.writerEnd()
|
|
v.r = k
|
|
v.v = mksv[l:]
|
|
}
|
|
})
|
|
|
|
slices.SortFunc(mksbv, cmpBytesRv)
|
|
for j := range mksbv {
|
|
e.c = containerMapKey
|
|
e.e.WriteMapElemKey(j == 0)
|
|
e.e.writeBytesAsis(mksbv[j].v)
|
|
e.mapElemValue()
|
|
e.encodeValue(mapGet(rv, mksbv[j].r, rvv, mparams), valFn)
|
|
}
|
|
e.blist.put(mksv)
|
|
if !byteSliceSameData(bs0, mksv) {
|
|
e.blist.put(bs0)
|
|
}
|
|
}
|
|
}
|
|
|
|
func (e *encoder[T]) init(h Handle) {
|
|
initHandle(h)
|
|
callMake(&e.e)
|
|
e.hh = h
|
|
e.h = h.getBasicHandle()
|
|
// e.be = e.hh.isBinary()
|
|
e.err = errEncoderNotInitialized
|
|
|
|
// e.fp = fastpathEList[T]()
|
|
e.fp = e.e.init(h, &e.encoderBase, e).(*fastpathEs[T])
|
|
|
|
if e.bytes {
|
|
e.rtidFn = &e.h.rtidFnsEncBytes
|
|
e.rtidFnNoExt = &e.h.rtidFnsEncNoExtBytes
|
|
} else {
|
|
e.rtidFn = &e.h.rtidFnsEncIO
|
|
e.rtidFnNoExt = &e.h.rtidFnsEncNoExtIO
|
|
}
|
|
|
|
e.reset()
|
|
}
|
|
|
|
func (e *encoder[T]) reset() {
|
|
e.e.reset()
|
|
if e.ci != nil {
|
|
e.ci = e.ci[:0]
|
|
}
|
|
e.c = 0
|
|
e.calls = 0
|
|
e.seq = 0
|
|
e.err = nil
|
|
}
|
|
|
|
// Encode writes an object into a stream.
|
|
//
|
|
// Encoding can be configured via the struct tag for the fields.
|
|
// The key (in the struct tags) that we look at is configurable.
|
|
//
|
|
// By default, we look up the "codec" key in the struct field's tags,
|
|
// and fall bak to the "json" key if "codec" is absent.
|
|
// That key in struct field's tag value is the key name,
|
|
// followed by an optional comma and options.
|
|
//
|
|
// To set an option on all fields (e.g. omitempty on all fields), you
|
|
// can create a field called _struct, and set flags on it. The options
|
|
// which can be set on _struct are:
|
|
// - omitempty: so all fields are omitted if empty
|
|
// - toarray: so struct is encoded as an array
|
|
// - int: so struct key names are encoded as signed integers (instead of strings)
|
|
// - uint: so struct key names are encoded as unsigned integers (instead of strings)
|
|
// - float: so struct key names are encoded as floats (instead of strings)
|
|
//
|
|
// More details on these below.
|
|
//
|
|
// Struct values "usually" encode as maps. Each exported struct field is encoded unless:
|
|
// - the field's tag is "-", OR
|
|
// - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
|
|
//
|
|
// When encoding as a map, the first string in the tag (before the comma)
|
|
// is the map key string to use when encoding.
|
|
// ...
|
|
// This key is typically encoded as a string.
|
|
// However, there are instances where the encoded stream has mapping keys encoded as numbers.
|
|
// For example, some cbor streams have keys as integer codes in the stream, but they should map
|
|
// to fields in a structured object. Consequently, a struct is the natural representation in code.
|
|
// For these, configure the struct to encode/decode the keys as numbers (instead of string).
|
|
// This is done with the int,uint or float option on the _struct field (see above).
|
|
//
|
|
// However, struct values may encode as arrays. This happens when:
|
|
// - StructToArray Encode option is set, OR
|
|
// - the tag on the _struct field sets the "toarray" option
|
|
//
|
|
// Note that omitempty is ignored when encoding struct values as arrays,
|
|
// as an entry must be encoded for each field, to maintain its position.
|
|
//
|
|
// Values with types that implement MapBySlice are encoded as stream maps.
|
|
//
|
|
// The empty values (for omitempty option) are false, 0, any nil pointer
|
|
// or interface value, and any array, slice, map, or string of length zero.
|
|
//
|
|
// Anonymous fields are encoded inline except:
|
|
// - the struct tag specifies a replacement name (first value)
|
|
// - the field is of an interface type
|
|
//
|
|
// Examples:
|
|
//
|
|
// // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
|
|
// type MyStruct struct {
|
|
// _struct bool `codec:",omitempty"` //set omitempty for every field
|
|
// Field1 string `codec:"-"` //skip this field
|
|
// Field2 int `codec:"myName"` //Use key "myName" in encode stream
|
|
// Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
|
|
// Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
|
|
// io.Reader //use key "Reader".
|
|
// MyStruct `codec:"my1" //use key "my1".
|
|
// MyStruct //inline it
|
|
// ...
|
|
// }
|
|
//
|
|
// type MyStruct struct {
|
|
// _struct bool `codec:",toarray"` //encode struct as an array
|
|
// }
|
|
//
|
|
// type MyStruct struct {
|
|
// _struct bool `codec:",uint"` //encode struct with "unsigned integer" keys
|
|
// Field1 string `codec:"1"` //encode Field1 key using: EncodeInt(1)
|
|
// Field2 string `codec:"2"` //encode Field2 key using: EncodeInt(2)
|
|
// }
|
|
//
|
|
// The mode of encoding is based on the type of the value. When a value is seen:
|
|
// - If a Selfer, call its CodecEncodeSelf method
|
|
// - If an extension is registered for it, call that extension function
|
|
// - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
|
|
// - Else encode it based on its reflect.Kind
|
|
//
|
|
// Note that struct field names and keys in map[string]XXX will be treated as symbols.
|
|
// Some formats support symbols (e.g. binc) and will properly encode the string
|
|
// only once in the stream, and use a tag to refer to it thereafter.
|
|
//
|
|
// Note that an error from an Encode call will make the Encoder unusable moving forward.
|
|
// This is because the state of the Encoder, it's output stream, etc are no longer stable.
|
|
// Any subsequent calls to Encode will trigger the same error.
|
|
func (e *encoder[T]) Encode(v interface{}) (err error) {
|
|
// tried to use closure, as runtime optimizes defer with no params.
|
|
// This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
|
|
// Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
|
|
defer panicValToErr(e, callRecoverSentinel, &e.err, &err, debugging)
|
|
e.mustEncode(v)
|
|
return
|
|
}
|
|
|
|
// MustEncode is like Encode, but panics if unable to Encode.
|
|
//
|
|
// Note: This provides insight to the code location that triggered the error.
|
|
//
|
|
// Note that an error from an Encode call will make the Encoder unusable moving forward.
|
|
// This is because the state of the Encoder, it's output stream, etc are no longer stable.
|
|
// Any subsequent calls to Encode will trigger the same error.
|
|
func (e *encoder[T]) MustEncode(v interface{}) {
|
|
defer panicValToErr(e, callRecoverSentinel, &e.err, nil, true)
|
|
e.mustEncode(v)
|
|
return
|
|
}
|
|
|
|
func (e *encoder[T]) mustEncode(v interface{}) {
|
|
halt.onerror(e.err)
|
|
if e.hh == nil {
|
|
halt.onerror(errNoFormatHandle)
|
|
}
|
|
|
|
e.calls++
|
|
if !e.encodeBuiltin(v) {
|
|
e.encodeR(reflect.ValueOf(v))
|
|
}
|
|
// e.encodeI(v) // MARKER inlined
|
|
e.calls--
|
|
if e.calls == 0 {
|
|
e.e.atEndOfEncode()
|
|
e.e.writerEnd()
|
|
}
|
|
}
|
|
|
|
func (e *encoder[T]) encodeI(iv interface{}) {
|
|
if !e.encodeBuiltin(iv) {
|
|
e.encodeR(reflect.ValueOf(iv))
|
|
}
|
|
}
|
|
|
|
func (e *encoder[T]) encodeIB(iv interface{}) {
|
|
if !e.encodeBuiltin(iv) {
|
|
// panic("invalid type passed to encodeBuiltin")
|
|
// halt.errorf("invalid type passed to encodeBuiltin: %T", iv)
|
|
// MARKER: calling halt.errorf pulls in fmt.Sprintf/Errorf which makes this non-inlineable
|
|
halt.errorStr("[should not happen] invalid type passed to encodeBuiltin")
|
|
}
|
|
}
|
|
|
|
func (e *encoder[T]) encodeR(base reflect.Value) {
|
|
e.encodeValue(base, nil)
|
|
}
|
|
|
|
func (e *encoder[T]) encodeBuiltin(iv interface{}) (ok bool) {
|
|
ok = true
|
|
switch v := iv.(type) {
|
|
case nil:
|
|
e.e.EncodeNil()
|
|
// case Selfer:
|
|
case Raw:
|
|
e.rawBytes(v)
|
|
case string:
|
|
e.e.EncodeString(v)
|
|
case bool:
|
|
e.e.EncodeBool(v)
|
|
case int:
|
|
e.e.EncodeInt(int64(v))
|
|
case int8:
|
|
e.e.EncodeInt(int64(v))
|
|
case int16:
|
|
e.e.EncodeInt(int64(v))
|
|
case int32:
|
|
e.e.EncodeInt(int64(v))
|
|
case int64:
|
|
e.e.EncodeInt(v)
|
|
case uint:
|
|
e.e.EncodeUint(uint64(v))
|
|
case uint8:
|
|
e.e.EncodeUint(uint64(v))
|
|
case uint16:
|
|
e.e.EncodeUint(uint64(v))
|
|
case uint32:
|
|
e.e.EncodeUint(uint64(v))
|
|
case uint64:
|
|
e.e.EncodeUint(v)
|
|
case uintptr:
|
|
e.e.EncodeUint(uint64(v))
|
|
case float32:
|
|
e.e.EncodeFloat32(v)
|
|
case float64:
|
|
e.e.EncodeFloat64(v)
|
|
case complex64:
|
|
e.encodeComplex64(v)
|
|
case complex128:
|
|
e.encodeComplex128(v)
|
|
case time.Time:
|
|
e.e.EncodeTime(v)
|
|
case []byte:
|
|
e.e.EncodeBytes(v) // e.e.EncodeStringBytesRaw(v)
|
|
default:
|
|
// we can't check non-predefined types, as they might be a Selfer or extension.
|
|
ok = !skipFastpathTypeSwitchInDirectCall && e.dh.fastpathEncodeTypeSwitch(iv, e)
|
|
}
|
|
return
|
|
}
|
|
|
|
// encodeValue will encode a value.
|
|
//
|
|
// Note that encodeValue will handle nil in the stream early, so that the
|
|
// subsequent calls i.e. kXXX methods, etc do not have to handle it themselves.
|
|
func (e *encoder[T]) encodeValue(rv reflect.Value, fn *encFn[T]) {
|
|
// MARKER: We check if value is nil here, so that the kXXX method do not have to.
|
|
// if a valid fn is passed, it MUST BE for the dereferenced type of rv
|
|
|
|
var ciPushes int
|
|
// if e.h.CheckCircularRef {
|
|
// ciPushes = e.ci.pushRV(rv)
|
|
// }
|
|
|
|
var rvp reflect.Value
|
|
var rvpValid bool
|
|
|
|
RV:
|
|
switch rv.Kind() {
|
|
case reflect.Ptr:
|
|
if rvIsNil(rv) {
|
|
e.e.EncodeNil()
|
|
goto END
|
|
}
|
|
rvpValid = true
|
|
rvp = rv
|
|
rv = rv.Elem()
|
|
// fn = nil // underlying type still same - no change
|
|
if e.h.CheckCircularRef && e.ci.canPushElemKind(rv.Kind()) {
|
|
e.ci.push(rv2i(rvp))
|
|
ciPushes++
|
|
}
|
|
goto RV
|
|
case reflect.Interface:
|
|
if rvIsNil(rv) {
|
|
e.e.EncodeNil()
|
|
goto END
|
|
}
|
|
rvpValid = false
|
|
rvp = reflect.Value{}
|
|
rv = rv.Elem()
|
|
fn = nil // underlying type may change, so prompt a reset
|
|
goto RV
|
|
case reflect.Map:
|
|
if rvIsNil(rv) {
|
|
if e.h.NilCollectionToZeroLength {
|
|
e.e.WriteMapEmpty()
|
|
} else {
|
|
e.e.EncodeNil()
|
|
}
|
|
goto END
|
|
}
|
|
case reflect.Slice, reflect.Chan:
|
|
if rvIsNil(rv) {
|
|
if e.h.NilCollectionToZeroLength {
|
|
e.e.WriteArrayEmpty()
|
|
} else {
|
|
e.e.EncodeNil()
|
|
}
|
|
goto END
|
|
}
|
|
case reflect.Invalid, reflect.Func:
|
|
e.e.EncodeNil()
|
|
goto END
|
|
}
|
|
|
|
if fn == nil {
|
|
fn = e.fn(rv.Type())
|
|
}
|
|
|
|
if !fn.i.addrE { // typically, addrE = false, so check it first
|
|
// keep rv same
|
|
} else if rvpValid {
|
|
rv = rvp
|
|
} else if rv.CanAddr() {
|
|
rv = rvAddr(rv, fn.i.ti.ptr)
|
|
} else {
|
|
rv = e.addrRV(rv, fn.i.ti.rt, fn.i.ti.ptr)
|
|
}
|
|
fn.fe(e, &fn.i, rv)
|
|
|
|
END:
|
|
if ciPushes > 0 {
|
|
e.ci.pop(ciPushes)
|
|
}
|
|
}
|
|
|
|
func (e *encoder[T]) encodeValueNonNil(rv reflect.Value, fn *encFn[T]) {
|
|
// only call this if a primitive (number, bool, string) OR
|
|
// a non-nil collection (map/slice/chan).
|
|
//
|
|
// Expects fn to be non-nil
|
|
if fn.i.addrE { // typically, addrE = false, so check it first
|
|
if rv.CanAddr() {
|
|
rv = rvAddr(rv, fn.i.ti.ptr)
|
|
} else {
|
|
rv = e.addrRV(rv, fn.i.ti.rt, fn.i.ti.ptr)
|
|
}
|
|
}
|
|
fn.fe(e, &fn.i, rv)
|
|
}
|
|
|
|
func (e *encoder[T]) encodeAs(v interface{}, t reflect.Type, ext bool) {
|
|
if ext {
|
|
e.encodeValue(baseRV(v), e.fn(t))
|
|
} else {
|
|
e.encodeValue(baseRV(v), e.fnNoExt(t))
|
|
}
|
|
}
|
|
|
|
func (e *encoder[T]) marshalUtf8(bs []byte, fnerr error) {
|
|
halt.onerror(fnerr)
|
|
if bs == nil {
|
|
e.e.EncodeNil()
|
|
} else {
|
|
e.e.EncodeString(stringView(bs))
|
|
}
|
|
}
|
|
|
|
func (e *encoder[T]) marshalAsis(bs []byte, fnerr error) {
|
|
halt.onerror(fnerr)
|
|
if bs == nil {
|
|
e.e.EncodeNil()
|
|
} else {
|
|
e.e.writeBytesAsis(bs) // e.asis(bs)
|
|
}
|
|
}
|
|
|
|
func (e *encoder[T]) marshalRaw(bs []byte, fnerr error) {
|
|
halt.onerror(fnerr)
|
|
e.e.EncodeBytes(bs)
|
|
}
|
|
|
|
func (e *encoder[T]) rawBytes(vv Raw) {
|
|
v := []byte(vv)
|
|
if !e.h.Raw {
|
|
halt.errorBytes("Raw values cannot be encoded: ", v)
|
|
}
|
|
e.e.writeBytesAsis(v)
|
|
}
|
|
|
|
func (e *encoder[T]) fn(t reflect.Type) *encFn[T] {
|
|
return e.dh.encFnViaBH(t, e.rtidFn, e.h, e.fp, false)
|
|
}
|
|
|
|
func (e *encoder[T]) fnNoExt(t reflect.Type) *encFn[T] {
|
|
return e.dh.encFnViaBH(t, e.rtidFnNoExt, e.h, e.fp, true)
|
|
}
|
|
|
|
// ---- container tracker methods
|
|
// Note: We update the .c after calling the callback.
|
|
//
|
|
// Callbacks ie Write(Map|Array)XXX should not use the containerState.
|
|
// It is there for post-callback use.
|
|
// Instead, callbacks have a parameter to tell if first time or not.
|
|
//
|
|
// Some code is commented out below, as they are manually inlined.
|
|
// Commented code is retained here for convernience.
|
|
|
|
func (e *encoder[T]) mapStart(length int) {
|
|
e.e.WriteMapStart(length)
|
|
e.c = containerMapStart
|
|
}
|
|
|
|
// func (e *encoder[T]) mapElemKey(firstTime bool) {
|
|
// e.e.WriteMapElemKey(firstTime)
|
|
// e.c = containerMapKey
|
|
// }
|
|
|
|
func (e *encoder[T]) mapElemValue() {
|
|
e.e.WriteMapElemValue()
|
|
e.c = containerMapValue
|
|
}
|
|
|
|
// func (e *encoder[T]) mapEnd() {
|
|
// e.e.WriteMapEnd()
|
|
// e.c = 0
|
|
// }
|
|
|
|
func (e *encoder[T]) arrayStart(length int) {
|
|
e.e.WriteArrayStart(length)
|
|
e.c = containerArrayStart
|
|
}
|
|
|
|
// func (e *encoder[T]) arrayElem(firstTime bool) {
|
|
// e.e.WriteArrayElem(firstTime)
|
|
// e.c = containerArrayElem
|
|
// }
|
|
|
|
// func (e *encoder[T]) arrayEnd() {
|
|
// e.e.WriteArrayEnd()
|
|
// e.c = 0
|
|
// }
|
|
|
|
// ----------
|
|
|
|
func (e *encoder[T]) writerEnd() {
|
|
e.e.writerEnd()
|
|
}
|
|
|
|
func (e *encoder[T]) atEndOfEncode() {
|
|
e.e.atEndOfEncode()
|
|
}
|
|
|
|
// Reset resets the Encoder with a new output stream.
|
|
//
|
|
// This accommodates using the state of the Encoder,
|
|
// where it has "cached" information about sub-engines.
|
|
func (e *encoder[T]) Reset(w io.Writer) {
|
|
if e.bytes {
|
|
halt.onerror(errEncNoResetBytesWithWriter)
|
|
}
|
|
e.reset()
|
|
if w == nil {
|
|
w = io.Discard
|
|
}
|
|
e.e.resetOutIO(w)
|
|
}
|
|
|
|
// ResetBytes resets the Encoder with a new destination output []byte.
|
|
func (e *encoder[T]) ResetBytes(out *[]byte) {
|
|
if !e.bytes {
|
|
halt.onerror(errEncNoResetWriterWithBytes)
|
|
}
|
|
e.resetBytes(out)
|
|
}
|
|
|
|
// only call this iff you are sure it is a bytes encoder
|
|
func (e *encoder[T]) resetBytes(out *[]byte) {
|
|
e.reset()
|
|
if out == nil {
|
|
out = &bytesEncAppenderDefOut
|
|
}
|
|
e.e.resetOutBytes(out)
|
|
}
|
|
|
|
// ----
|
|
|
|
func (helperEncDriver[T]) newEncoderBytes(out *[]byte, h Handle) *encoder[T] {
|
|
var c1 encoder[T]
|
|
c1.bytes = true
|
|
c1.init(h)
|
|
c1.ResetBytes(out)
|
|
return &c1
|
|
}
|
|
|
|
func (helperEncDriver[T]) newEncoderIO(out io.Writer, h Handle) *encoder[T] {
|
|
var c1 encoder[T]
|
|
c1.bytes = false
|
|
c1.init(h)
|
|
c1.Reset(out)
|
|
return &c1
|
|
}
|
|
|
|
func (helperEncDriver[T]) encFnloadFastpathUnderlying(ti *typeInfo, fp *fastpathEs[T]) (f *fastpathE[T], u reflect.Type) {
|
|
rtid := rt2id(ti.fastpathUnderlying)
|
|
idx, ok := fastpathAvIndex(rtid)
|
|
if !ok {
|
|
return
|
|
}
|
|
f = &fp[idx]
|
|
if uint8(reflect.Array) == ti.kind {
|
|
u = reflect.ArrayOf(ti.rt.Len(), ti.elem)
|
|
} else {
|
|
u = f.rt
|
|
}
|
|
return
|
|
}
|
|
|
|
// ----
|
|
|
|
func (helperEncDriver[T]) encFindRtidFn(s []encRtidFn[T], rtid uintptr) (i uint, fn *encFn[T]) {
|
|
// binary search. Adapted from sort/search.go. Use goto (not for loop) to allow inlining.
|
|
var h uint // var h, i uint
|
|
var j = uint(len(s))
|
|
LOOP:
|
|
if i < j {
|
|
h = (i + j) >> 1 // avoid overflow when computing h // h = i + (j-i)/2
|
|
if s[h].rtid < rtid {
|
|
i = h + 1
|
|
} else {
|
|
j = h
|
|
}
|
|
goto LOOP
|
|
}
|
|
if i < uint(len(s)) && s[i].rtid == rtid {
|
|
fn = s[i].fn
|
|
}
|
|
return
|
|
}
|
|
|
|
func (helperEncDriver[T]) encFromRtidFnSlice(fns *atomicRtidFnSlice) (s []encRtidFn[T]) {
|
|
if v := fns.load(); v != nil {
|
|
s = *(lowLevelToPtr[[]encRtidFn[T]](v))
|
|
}
|
|
return
|
|
}
|
|
|
|
func (dh helperEncDriver[T]) encFnViaBH(rt reflect.Type, fns *atomicRtidFnSlice,
|
|
x *BasicHandle, fp *fastpathEs[T], checkExt bool) (fn *encFn[T]) {
|
|
return dh.encFnVia(rt, fns, x.typeInfos(), &x.mu, x.extHandle, fp,
|
|
checkExt, x.CheckCircularRef, x.timeBuiltin, x.binaryHandle, x.jsonHandle)
|
|
}
|
|
|
|
func (dh helperEncDriver[T]) encFnVia(rt reflect.Type, fns *atomicRtidFnSlice,
|
|
tinfos *TypeInfos, mu *sync.Mutex, exth extHandle, fp *fastpathEs[T],
|
|
checkExt, checkCircularRef, timeBuiltin, binaryEncoding, json bool) (fn *encFn[T]) {
|
|
rtid := rt2id(rt)
|
|
var sp []encRtidFn[T] = dh.encFromRtidFnSlice(fns)
|
|
if sp != nil {
|
|
_, fn = dh.encFindRtidFn(sp, rtid)
|
|
}
|
|
if fn == nil {
|
|
fn = dh.encFnViaLoader(rt, rtid, fns, tinfos, mu, exth, fp, checkExt, checkCircularRef, timeBuiltin, binaryEncoding, json)
|
|
}
|
|
return
|
|
}
|
|
|
|
func (dh helperEncDriver[T]) encFnViaLoader(rt reflect.Type, rtid uintptr, fns *atomicRtidFnSlice,
|
|
tinfos *TypeInfos, mu *sync.Mutex, exth extHandle, fp *fastpathEs[T],
|
|
checkExt, checkCircularRef, timeBuiltin, binaryEncoding, json bool) (fn *encFn[T]) {
|
|
|
|
fn = dh.encFnLoad(rt, rtid, tinfos, exth, fp, checkExt, checkCircularRef, timeBuiltin, binaryEncoding, json)
|
|
var sp []encRtidFn[T]
|
|
mu.Lock()
|
|
sp = dh.encFromRtidFnSlice(fns)
|
|
// since this is an atomic load/store, we MUST use a different array each time,
|
|
// else we have a data race when a store is happening simultaneously with a encFindRtidFn call.
|
|
if sp == nil {
|
|
sp = []encRtidFn[T]{{rtid, fn}}
|
|
fns.store(ptrToLowLevel(&sp))
|
|
} else {
|
|
idx, fn2 := dh.encFindRtidFn(sp, rtid)
|
|
if fn2 == nil {
|
|
sp2 := make([]encRtidFn[T], len(sp)+1)
|
|
copy(sp2[idx+1:], sp[idx:])
|
|
copy(sp2, sp[:idx])
|
|
sp2[idx] = encRtidFn[T]{rtid, fn}
|
|
fns.store(ptrToLowLevel(&sp2))
|
|
}
|
|
}
|
|
mu.Unlock()
|
|
return
|
|
}
|
|
|
|
func (dh helperEncDriver[T]) encFnLoad(rt reflect.Type, rtid uintptr, tinfos *TypeInfos,
|
|
exth extHandle, fp *fastpathEs[T],
|
|
checkExt, checkCircularRef, timeBuiltin, binaryEncoding, json bool) (fn *encFn[T]) {
|
|
fn = new(encFn[T])
|
|
fi := &(fn.i)
|
|
ti := tinfos.get(rtid, rt)
|
|
fi.ti = ti
|
|
rk := reflect.Kind(ti.kind)
|
|
|
|
// anything can be an extension except the built-in ones: time, raw and rawext.
|
|
// ensure we check for these types, then if extension, before checking if
|
|
// it implementes one of the pre-declared interfaces.
|
|
|
|
// fi.addrEf = true
|
|
|
|
if rtid == timeTypId && timeBuiltin {
|
|
fn.fe = (*encoder[T]).kTime
|
|
} else if rtid == rawTypId {
|
|
fn.fe = (*encoder[T]).raw
|
|
} else if rtid == rawExtTypId {
|
|
fn.fe = (*encoder[T]).rawExt
|
|
fi.addrE = true
|
|
} else if xfFn := exth.getExt(rtid, checkExt); xfFn != nil {
|
|
fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext
|
|
fn.fe = (*encoder[T]).ext
|
|
if rk == reflect.Struct || rk == reflect.Array {
|
|
fi.addrE = true
|
|
}
|
|
} else if ti.flagSelfer || ti.flagSelferPtr {
|
|
fn.fe = (*encoder[T]).selferMarshal
|
|
fi.addrE = ti.flagSelferPtr
|
|
} else if supportMarshalInterfaces && binaryEncoding &&
|
|
(ti.flagBinaryMarshaler || ti.flagBinaryMarshalerPtr) &&
|
|
(ti.flagBinaryUnmarshaler || ti.flagBinaryUnmarshalerPtr) {
|
|
fn.fe = (*encoder[T]).binaryMarshal
|
|
fi.addrE = ti.flagBinaryMarshalerPtr
|
|
} else if supportMarshalInterfaces && !binaryEncoding && json &&
|
|
(ti.flagJsonMarshaler || ti.flagJsonMarshalerPtr) &&
|
|
(ti.flagJsonUnmarshaler || ti.flagJsonUnmarshalerPtr) {
|
|
//If JSON, we should check JSONMarshal before textMarshal
|
|
fn.fe = (*encoder[T]).jsonMarshal
|
|
fi.addrE = ti.flagJsonMarshalerPtr
|
|
} else if supportMarshalInterfaces && !binaryEncoding &&
|
|
(ti.flagTextMarshaler || ti.flagTextMarshalerPtr) &&
|
|
(ti.flagTextUnmarshaler || ti.flagTextUnmarshalerPtr) {
|
|
fn.fe = (*encoder[T]).textMarshal
|
|
fi.addrE = ti.flagTextMarshalerPtr
|
|
} else {
|
|
if fastpathEnabled && (rk == reflect.Map || rk == reflect.Slice || rk == reflect.Array) {
|
|
// by default (without using unsafe),
|
|
// if an array is not addressable, converting from an array to a slice
|
|
// requires an allocation (see helper_not_unsafe.go: func rvGetSlice4Array).
|
|
//
|
|
// (Non-addressable arrays mostly occur as keys/values from a map).
|
|
//
|
|
// However, fastpath functions are mostly for slices of numbers or strings,
|
|
// which are small by definition and thus allocation should be fast/cheap in time.
|
|
//
|
|
// Consequently, the value of doing this quick allocation to elide the overhead cost of
|
|
// non-optimized (not-unsafe) reflection is a fair price.
|
|
var rtid2 uintptr
|
|
if !ti.flagHasPkgPath { // un-named type (slice or mpa or array)
|
|
rtid2 = rtid
|
|
if rk == reflect.Array {
|
|
rtid2 = rt2id(ti.key) // ti.key for arrays = reflect.SliceOf(ti.elem)
|
|
}
|
|
if idx, ok := fastpathAvIndex(rtid2); ok {
|
|
fn.fe = fp[idx].encfn
|
|
}
|
|
} else { // named type (with underlying type of map or slice or array)
|
|
// try to use mapping for underlying type
|
|
xfe, xrt := dh.encFnloadFastpathUnderlying(ti, fp)
|
|
if xfe != nil {
|
|
xfnf := xfe.encfn
|
|
fn.fe = func(e *encoder[T], xf *encFnInfo, xrv reflect.Value) {
|
|
xfnf(e, xf, rvConvert(xrv, xrt))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if fn.fe == nil {
|
|
switch rk {
|
|
case reflect.Bool:
|
|
fn.fe = (*encoder[T]).kBool
|
|
case reflect.String:
|
|
// Do not use different functions based on StringToRaw option, as that will statically
|
|
// set the function for a string type, and if the Handle is modified thereafter,
|
|
// behaviour is non-deterministic
|
|
// i.e. DO NOT DO:
|
|
// if x.StringToRaw {
|
|
// fn.fe = (*encoder[T]).kStringToRaw
|
|
// } else {
|
|
// fn.fe = (*encoder[T]).kStringEnc
|
|
// }
|
|
|
|
fn.fe = (*encoder[T]).kString
|
|
case reflect.Int:
|
|
fn.fe = (*encoder[T]).kInt
|
|
case reflect.Int8:
|
|
fn.fe = (*encoder[T]).kInt8
|
|
case reflect.Int16:
|
|
fn.fe = (*encoder[T]).kInt16
|
|
case reflect.Int32:
|
|
fn.fe = (*encoder[T]).kInt32
|
|
case reflect.Int64:
|
|
fn.fe = (*encoder[T]).kInt64
|
|
case reflect.Uint:
|
|
fn.fe = (*encoder[T]).kUint
|
|
case reflect.Uint8:
|
|
fn.fe = (*encoder[T]).kUint8
|
|
case reflect.Uint16:
|
|
fn.fe = (*encoder[T]).kUint16
|
|
case reflect.Uint32:
|
|
fn.fe = (*encoder[T]).kUint32
|
|
case reflect.Uint64:
|
|
fn.fe = (*encoder[T]).kUint64
|
|
case reflect.Uintptr:
|
|
fn.fe = (*encoder[T]).kUintptr
|
|
case reflect.Float32:
|
|
fn.fe = (*encoder[T]).kFloat32
|
|
case reflect.Float64:
|
|
fn.fe = (*encoder[T]).kFloat64
|
|
case reflect.Complex64:
|
|
fn.fe = (*encoder[T]).kComplex64
|
|
case reflect.Complex128:
|
|
fn.fe = (*encoder[T]).kComplex128
|
|
case reflect.Chan:
|
|
fn.fe = (*encoder[T]).kChan
|
|
case reflect.Slice:
|
|
fn.fe = (*encoder[T]).kSlice
|
|
case reflect.Array:
|
|
fn.fe = (*encoder[T]).kArray
|
|
case reflect.Struct:
|
|
if ti.simple {
|
|
fn.fe = (*encoder[T]).kStructSimple
|
|
} else {
|
|
fn.fe = (*encoder[T]).kStruct
|
|
}
|
|
case reflect.Map:
|
|
fn.fe = (*encoder[T]).kMap
|
|
case reflect.Interface:
|
|
// encode: reflect.Interface are handled already by preEncodeValue
|
|
fn.fe = (*encoder[T]).kErr
|
|
default:
|
|
// reflect.Ptr and reflect.Interface are handled already by preEncodeValue
|
|
fn.fe = (*encoder[T]).kErr
|
|
}
|
|
}
|
|
}
|
|
return
|
|
}
|