diff --git a/main/config/config.py b/main/config/config.py index 7aed502..0d399d3 100644 --- a/main/config/config.py +++ b/main/config/config.py @@ -37,6 +37,9 @@ LORA_CONFIG = { # (ED + 05(消息长度) + 0201(地址) + "Hello"(消息本体)) # 接收: ED 05 02 01 48 65 6c 6c 6f 'lora_mesh_mode': 'EC', + + # 单包最大用户数据数据长度, 模块限制240, 去掉两位自定义包头, 还剩238 + 'max_chunk_size': 238 } # --- 总线配置 --- diff --git a/main/lora/lora_mesh_uart_passthrough_manager.py b/main/lora/lora_mesh_uart_passthrough_manager.py index 1b38ea4..af22405 100644 --- a/main/lora/lora_mesh_uart_passthrough_manager.py +++ b/main/lora/lora_mesh_uart_passthrough_manager.py @@ -10,11 +10,14 @@ LoRa模块的具体实现 (UART Passthrough for LoRa Mesh) from .lora_interface import ILoraManager from main.logs.logger import log +from machine import UART +import time class LoRaMeshUartPassthroughManager(ILoraManager): """ - 通过UART与LoRa Mesh模块通信的处理器实现 (透传模式)。 + 通过UART与LoRa Mesh模块通信的处理器实现 (ED模式)。 + 实现了自动分片与重组逻辑。 """ def __init__(self, lora_config: dict): @@ -24,41 +27,148 @@ class LoRaMeshUartPassthroughManager(ILoraManager): Args: lora_config (dict): 来自全局配置文件的LoRa配置字典。 """ - log("LoRaMeshUartPassthroughHandler: 初始化...") + log("LoRaMeshUartPassthroughManager: 初始化...") - # --- 将配置注入到实例变量 --- + # --- 配置注入 --- self.master_address = lora_config.get('master_address') self.uart_id = lora_config.get('uart_id') self.baudrate = lora_config.get('baudrate') self.pins = lora_config.get('pins') - self.lora_mesh_mode = lora_config.get('lora_mesh_mode') + self.max_chunk_size = lora_config.get('max_chunk_size') + self.lora_mesh_mode = b'\xed' + # TODO 目前这个配置没用, 完全按ED处理的 + if lora_config.get('lora_mesh_mode') == 'EC': + self.lora_mesh_mode = b'\xec' - # 在这里可以添加真实的硬件初始化代码,例如初始化UART - # self.uart = UART(self.uart_id, self.baudrate, tx=self.pins['tx'], rx=self.pins['rx']) + # --- 硬件初始化 --- + self.uart = UART(self.uart_id, self.baudrate, tx=self.pins['tx'], rx=self.pins['rx']) - log(f"LoRaMeshUartPassthroughHandler: 配置加载完成. UART ID: {self.uart_id}, Baudrate: {self.baudrate}") + # --- 内部状态变量 --- + self._rx_buffer = bytearray() # UART接收缓冲区 + self._reassembly_cache = {} # 分片重组缓冲区 { chunk_index: chunk_data } + self._expected_chunks = 0 # 当前会话期望的总分片数 - def receive_packet(self): + log(f"LoRaMeshUartPassthroughManager: 配置加载完成. UART ID: {self.uart_id}, Baudrate: {self.baudrate}") + + def send_packet(self, payload: bytes) -> bool: """ - 【实现】非阻塞地检查并接收一个数据包。 - (当前为存根实现) - """ - # 具体的实现将在这里... - # e.g. self.uart.read() - pass - - def send_packet(self, data_bytes: bytes) -> bool: - """ - 【实现】发送一个数据包。 - (当前为存根实现) + 【实现】发送一个数据包,自动处理分片。 Args: - data_bytes (bytes): 需要发送的字节数据。 + payload (bytes): 需要发送的完整业务数据。 Returns: - bool: True表示发送成功,False表示失败。 + bool: True表示所有分片都已成功提交发送,False表示失败。 """ - # 具体的实现将在这里... - # e.g. self.uart.write(data_bytes) - log(f"LoRaMeshUartPassthroughHandler: 模拟发送数据 -> {data_bytes}") - return True + max_chunk_size = self.max_chunk_size + if not payload: + total_chunks = 1 + else: + total_chunks = (len(payload) + max_chunk_size - 1) // max_chunk_size + + try: + for i in range(total_chunks): + chunk_index = i + start = i * max_chunk_size + end = start + max_chunk_size + chunk_data = payload[start:end] + + # --- 组装物理包 --- + header = b'\xed' + dest_addr_bytes = self.master_address.to_bytes(2, 'big') + total_chunks_bytes = total_chunks.to_bytes(1, 'big') + current_chunk_bytes = chunk_index.to_bytes(1, 'big') + + # 计算后续长度(总包数和当前包序号是自定义包头, 各占一位, 标准包头算在长度内) + length_val = 2 + len(chunk_data) + length_bytes = length_val.to_bytes(1, 'big') + + # 拼接成最终的数据包 + packet_to_send = header + length_bytes + dest_addr_bytes + total_chunks_bytes + current_chunk_bytes + chunk_data + + self.uart.write(packet_to_send) + log(f"LoRa: 发送分片 {chunk_index + 1}/{total_chunks} 到地址 {self.master_address}") + + # 让出CPU, 模块将缓存区的数据发出去本身也需要时间 + time.sleep_ms(10) + + return True + + except Exception as e: + log(f"LoRa: 发送数据包失败: {e}") + return False + + def receive_packet(self) -> bytes | None: + """ + 【实现】非阻塞地检查、解析并重组一个完整的数据包。 + """ + # 1. 从硬件读取数据到缓冲区 + if self.uart.any(): + self._rx_buffer.extend(self.uart.read()) + + # 2. 循环尝试从缓冲区解析包 + while True: + # 2.1 检查头部和长度字段是否存在 + if len(self._rx_buffer) < 2: + return None # 数据不足,无法读取长度 + + # 2.2 检查帧头是否正确 + if self._rx_buffer[0] != 0xED: + log(f"LoRa: 接收到错误帧头: {hex(self._rx_buffer[0])},正在寻找下一个ED...") + next_ed = self._rx_buffer.find(b'\xed', 1) + if next_ed == -1: + self._rx_buffer.clear() + else: + self._rx_buffer = self._rx_buffer[next_ed:] + continue + + # 2.3 检查包是否完整 + payload_len = self._rx_buffer[1] + total_packet_len = 1 + 1 + payload_len + if len(self._rx_buffer) < total_packet_len: + return None # "半包"情况,等待更多数据 + + # 3. 提取和解析一个完整的物理包 + packet = self._rx_buffer[:total_packet_len] + self._rx_buffer = self._rx_buffer[total_packet_len:] + + addr = int.from_bytes(packet[2:4], 'big') + total_chunks = packet[4] + current_chunk = packet[5] + chunk_data = packet[6:] + + # --- 长度反向校验 --- + # 根据协议,Length字段 = 2 (自定义头) + N (数据块) + expected_payload_len = 2 + len(chunk_data) + if payload_len != expected_payload_len: + log(f"LoRa: 收到损坏的数据包!声明长度 {payload_len} 与实际计算长度 {expected_payload_len} 不符。已丢弃。") + # 包已从缓冲区移除,直接continue进入下一次循环,尝试解析缓冲区的后续内容 + continue + # --- 校验结束 --- + + # 4. 重组逻辑 + if total_chunks == 1: + log(f"LoRa: 收到单包消息,来自地址 {addr},长度 {len(chunk_data)}") + return chunk_data + + if current_chunk == 0: + log(f"LoRa: 开始接收新的多包会话 ({total_chunks}个分片)...") + self._reassembly_cache.clear() + self._expected_chunks = total_chunks + + self._reassembly_cache[current_chunk] = chunk_data + log(f"LoRa: 收到分片 {current_chunk + 1}/{self._expected_chunks},已缓存 {len(self._reassembly_cache)} 个") + + if len(self._reassembly_cache) == self._expected_chunks: + log("LoRa: 所有分片已集齐,正在重组...") + full_payload = bytearray() + for i in range(self._expected_chunks): + if i not in self._reassembly_cache: + log(f"LoRa: 重组失败!缺少分片 {i}。") + self._reassembly_cache.clear() + return None + full_payload.extend(self._reassembly_cache[i]) + + log(f"LoRa: 重组完成,总长度 {len(full_payload)}") + self._reassembly_cache.clear() + return bytes(full_payload)