#!/usr/bin/env python # -*- coding: utf-8 -*- """ LoRa模块的具体实现 (UART Passthrough for LoRa Mesh) 负责与LoRa模块进行底层通信,并向上层提供标准化的数据包收发接口。 这个实现针对的是通过UART进行透传的LoRa Mesh模块。 """ from ..logs.logger import log from machine import UART import time class LoRaMeshUartPassthroughManager: """ 通过UART与LoRa Mesh模块通信的处理器实现 (ED模式)。 实现了自动分片与重组逻辑。 """ def __init__(self, lora_config: dict): """ 初始化LoRa处理器。 Args: lora_config (dict): 来自全局配置文件的LoRa配置字典。 """ log("LoRaMeshUartPassthroughManager: 初始化...") # --- 配置注入 --- self.master_address = lora_config.get('master_address') self.uart_id = lora_config.get('uart_id') self.baudrate = lora_config.get('baudrate') self.pins = lora_config.get('pins') self.max_chunk_size = lora_config.get('max_chunk_size') self.lora_mesh_mode = b'\xed' # TODO 目前这个配置没用, 完全按ED处理的 if lora_config.get('lora_mesh_mode') == 'EC': self.lora_mesh_mode = b'\xec' # --- 硬件初始化 --- self.uart = UART(self.uart_id, self.baudrate, tx=self.pins['tx'], rx=self.pins['rx']) # --- 内部状态变量 --- self._rx_buffer = bytearray() # UART接收缓冲区 self._reassembly_cache = {} # 分片重组缓冲区 { chunk_index: chunk_data } self._expected_chunks = 0 # 当前会话期望的总分片数 log(f"LoRaMeshUartPassthroughManager: 配置加载完成. UART ID: {self.uart_id}, Baudrate: {self.baudrate}, 针脚: {self.pins}") def send_packet(self, payload: bytes) -> bool: """ 【实现】发送一个数据包,自动处理分片。 Args: payload (bytes): 需要发送的完整业务数据。 Returns: bool: True表示所有分片都已成功提交发送,False表示失败。 """ max_chunk_size = self.max_chunk_size if not payload: total_chunks = 1 else: total_chunks = (len(payload) + max_chunk_size - 1) // max_chunk_size try: for i in range(total_chunks): chunk_index = i start = i * max_chunk_size end = start + max_chunk_size chunk_data = payload[start:end] # --- 组装物理包 --- header = b'\xed' dest_addr_bytes = self.master_address.to_bytes(2, 'big') total_chunks_bytes = total_chunks.to_bytes(1, 'big') current_chunk_bytes = chunk_index.to_bytes(1, 'big') # 计算后续长度(总包数和当前包序号是自定义包头, 各占一位, 标准包头算在长度内) length_val = 2 + len(chunk_data) length_bytes = length_val.to_bytes(1, 'big') # 拼接成最终的数据包 packet_to_send = header + length_bytes + dest_addr_bytes + total_chunks_bytes + current_chunk_bytes + chunk_data self.uart.write(packet_to_send) log(f"LoRa: 发送分片 {chunk_index + 1}/{total_chunks} 到地址 {self.master_address}") # 让出CPU, 模块将缓存区的数据发出去本身也需要时间 time.sleep_ms(10) return True except Exception as e: log(f"LoRa: 发送数据包失败: {e}") return False def receive_packet(self) -> bytes | None: """ 【实现】非阻塞地检查、解析并重组一个完整的数据包。 """ # 1. 从硬件读取数据到缓冲区 if self.uart.any(): new_data = self.uart.read() if new_data: log(f"LoRa: UART收到原始数据 (长度 {len(new_data)}): {new_data.hex()}") self._rx_buffer.extend(new_data) # 如果缓冲区为空,没有必要继续处理 if not self._rx_buffer: return None # 2. 只要缓冲区有数据就持续尝试从缓冲区解析包 while len(self._rx_buffer) > 0: log(f"LoRa: --- 开始新一轮解析, 缓冲区 (长度 {len(self._rx_buffer)}): {self._rx_buffer.hex()} ---") # 2.1 检查头部和长度字段是否存在 if len(self._rx_buffer) < 2: log("LoRa: 缓冲区数据不足 (小于2字节),无法读取包头。等待更多数据...") return None # 数据不足,无法读取长度 # 2.2 检查帧头是否正确 if self._rx_buffer[0] != 0xED: log(f"LoRa: 接收到错误帧头: {hex(self._rx_buffer[0])},正在寻找下一个ED...") next_ed = self._rx_buffer.find(b'\xed', 1) if next_ed == -1: log("LoRa: 缓冲区无有效帧头,已清空。") self._rx_buffer[:] = b'' return None # 清空后没有数据了, 直接返回 else: log(f"LoRa: 在位置 {next_ed} 找到下一个有效帧头,丢弃之前的数据。") self._rx_buffer = self._rx_buffer[next_ed:] continue # 继续循环,用新的缓冲区数据重新开始解析 # 2.3 检查包是否完整 payload_len = self._rx_buffer[1] # 物理层在末尾又加了2字节的源地址,所以完整包长需要+2。 total_packet_len = 1 + 1 + payload_len + 2 log(f"LoRa: 帧头正确(ED)。声明的后续包长(payload_len): {payload_len}。计算出的总包长: {total_packet_len}。") if len(self._rx_buffer) < total_packet_len: log(f"LoRa: '半包'情况,需要 {total_packet_len} 字节,但缓冲区只有 {len(self._rx_buffer)} 字节。等待更多数据...") return None # "半包"情况,等待更多数据 # 3. 提取和解析一个完整的物理包 log(f"LoRa: 发现完整物理包 (长度 {total_packet_len}),正在提取...") packet = self._rx_buffer[:total_packet_len] self._rx_buffer = self._rx_buffer[total_packet_len:] log(f"LoRa: 提取的包: {packet.hex()}。剩余缓冲区 (长度 {len(self._rx_buffer)}): {self._rx_buffer.hex()}") # --- 包结构解析 --- # 根据代码 `chunk_data = packet[6:-2]` 推断,包结构为: # 1 (帧头) + 1 (长度) + 2 (目标地址) + 1 (总分片) + 1 (当前分片) + N (数据) + 2 (源地址) # 因此,一个合法的包至少需要 1+1+2+1+1+2 = 8个字节 if len(packet) < 8: log(f"LoRa: 包长度 {len(packet)} 小于协议最小长度8, 判定为坏包,已丢弃。") continue addr = int.from_bytes(packet[2:4], 'big') total_chunks = packet[4] current_chunk = packet[5] # 提取数据块,排除末尾的2字节源地址 chunk_data = packet[6:-2] source_addr = int.from_bytes(packet[-2:], 'big') log(f"LoRa: 解析包: 源地址={source_addr}, 目标地址={addr}, 总分片={total_chunks}, 当前分片={current_chunk}, 数据块长度={len(chunk_data)}") # 4. 重组逻辑 if total_chunks == 1: log(f"LoRa: 收到单包消息,来自地址 {source_addr},长度 {len(chunk_data)}") self._reassembly_cache.clear() self._expected_chunks = 0 return chunk_data # 对于多包消息,只有当收到第一个分片时才清空缓存并设置期望分片数 if current_chunk == 0: log(f"LoRa: 开始接收新的多包会话 ({total_chunks}个分片) from {source_addr}...") self._reassembly_cache.clear() self._expected_chunks = total_chunks elif not self._reassembly_cache and self._expected_chunks == 0: # 如果不是第一个分片,但缓存是空的,说明错过了第一个分片,丢弃当前分片 log(f"LoRa: 收到非首个分片 {current_chunk} from {source_addr},但未检测到会话开始,已丢弃。") continue self._reassembly_cache[current_chunk] = chunk_data log(f"LoRa: 收到分片 {current_chunk + 1}/{self._expected_chunks} from {source_addr},已缓存 {len(self._reassembly_cache)} 个") if len(self._reassembly_cache) == self._expected_chunks: log(f"LoRa: 所有分片已集齐 (from {source_addr}),正在重组...") full_payload = bytearray() for i in range(self._expected_chunks): if i not in self._reassembly_cache: log(f"LoRa: 重组失败!缺少分片 {i}。") self._reassembly_cache.clear() self._expected_chunks = 0 return None full_payload.extend(self._reassembly_cache[i]) log(f"LoRa: 重组完成,总长度 {len(full_payload)}") self._reassembly_cache.clear() self._expected_chunks = 0 return bytes(full_payload) # while 循环结束,意味着缓冲区被处理完毕但没有返回一个完整的包 return None