Files
pig-farm-controller/vendor/github.com/ugorji/go/codec/decode.go

1962 lines
55 KiB
Go

//go:build notmono || codec.notmono
// Copyright (c) 2012-2020 Ugorji Nwoke. All rights reserved.
// Use of this source code is governed by a MIT license found in the LICENSE file.
package codec
import (
"encoding"
"io"
"reflect"
"strconv"
"sync"
"time"
)
type helperDecDriver[T decDriver] struct{}
// decFn encapsulates the captured variables and the encode function.
// This way, we only do some calculations one times, and pass to the
// code block that should be called (encapsulated in a function)
// instead of executing the checks every time.
type decFn[T decDriver] struct {
i decFnInfo
fd func(*decoder[T], *decFnInfo, reflect.Value)
// _ [1]uint64 // padding (cache-aligned)
}
type decRtidFn[T decDriver] struct {
rtid uintptr
fn *decFn[T]
}
// ----
// Decoder reads and decodes an object from an input stream in a supported format.
//
// Decoder is NOT safe for concurrent use i.e. a Decoder cannot be used
// concurrently in multiple goroutines.
//
// However, as Decoder could be allocation heavy to initialize, a Reset method is provided
// so its state can be reused to decode new input streams repeatedly.
// This is the idiomatic way to use.
type decoder[T decDriver] struct {
dh helperDecDriver[T]
fp *fastpathDs[T]
d T
decoderBase
}
func (d *decoder[T]) rawExt(f *decFnInfo, rv reflect.Value) {
d.d.DecodeRawExt(rv2i(rv).(*RawExt))
}
func (d *decoder[T]) ext(f *decFnInfo, rv reflect.Value) {
d.d.DecodeExt(rv2i(rv), f.ti.rt, f.xfTag, f.xfFn)
}
func (d *decoder[T]) selferUnmarshal(_ *decFnInfo, rv reflect.Value) {
rv2i(rv).(Selfer).CodecDecodeSelf(&Decoder{d})
}
func (d *decoder[T]) binaryUnmarshal(_ *decFnInfo, rv reflect.Value) {
bm := rv2i(rv).(encoding.BinaryUnmarshaler)
xbs, _ := d.d.DecodeBytes()
fnerr := bm.UnmarshalBinary(xbs)
halt.onerror(fnerr)
}
func (d *decoder[T]) textUnmarshal(_ *decFnInfo, rv reflect.Value) {
tm := rv2i(rv).(encoding.TextUnmarshaler)
fnerr := tm.UnmarshalText(bytesOKs(d.d.DecodeStringAsBytes()))
halt.onerror(fnerr)
}
func (d *decoder[T]) jsonUnmarshal(_ *decFnInfo, rv reflect.Value) {
d.jsonUnmarshalV(rv2i(rv).(jsonUnmarshaler))
}
func (d *decoder[T]) jsonUnmarshalV(tm jsonUnmarshaler) {
// grab the bytes to be read, as UnmarshalJSON needs the full JSON so as to unmarshal it itself.
halt.onerror(tm.UnmarshalJSON(d.d.nextValueBytes()))
}
func (d *decoder[T]) kErr(_ *decFnInfo, rv reflect.Value) {
halt.errorf("unsupported decoding kind: %s, for %#v", rv.Kind(), rv)
// halt.errorStr2("no decoding function defined for kind: ", rv.Kind().String())
}
func (d *decoder[T]) raw(_ *decFnInfo, rv reflect.Value) {
rvSetBytes(rv, d.rawBytes())
}
func (d *decoder[T]) kString(_ *decFnInfo, rv reflect.Value) {
rvSetString(rv, d.detach2Str(d.d.DecodeStringAsBytes()))
}
func (d *decoder[T]) kBool(_ *decFnInfo, rv reflect.Value) {
rvSetBool(rv, d.d.DecodeBool())
}
func (d *decoder[T]) kTime(_ *decFnInfo, rv reflect.Value) {
rvSetTime(rv, d.d.DecodeTime())
}
func (d *decoder[T]) kFloat32(_ *decFnInfo, rv reflect.Value) {
rvSetFloat32(rv, d.d.DecodeFloat32())
}
func (d *decoder[T]) kFloat64(_ *decFnInfo, rv reflect.Value) {
rvSetFloat64(rv, d.d.DecodeFloat64())
}
func (d *decoder[T]) kComplex64(_ *decFnInfo, rv reflect.Value) {
rvSetComplex64(rv, complex(d.d.DecodeFloat32(), 0))
}
func (d *decoder[T]) kComplex128(_ *decFnInfo, rv reflect.Value) {
rvSetComplex128(rv, complex(d.d.DecodeFloat64(), 0))
}
func (d *decoder[T]) kInt(_ *decFnInfo, rv reflect.Value) {
rvSetInt(rv, int(chkOvf.IntV(d.d.DecodeInt64(), intBitsize)))
}
func (d *decoder[T]) kInt8(_ *decFnInfo, rv reflect.Value) {
rvSetInt8(rv, int8(chkOvf.IntV(d.d.DecodeInt64(), 8)))
}
func (d *decoder[T]) kInt16(_ *decFnInfo, rv reflect.Value) {
rvSetInt16(rv, int16(chkOvf.IntV(d.d.DecodeInt64(), 16)))
}
func (d *decoder[T]) kInt32(_ *decFnInfo, rv reflect.Value) {
rvSetInt32(rv, int32(chkOvf.IntV(d.d.DecodeInt64(), 32)))
}
func (d *decoder[T]) kInt64(_ *decFnInfo, rv reflect.Value) {
rvSetInt64(rv, d.d.DecodeInt64())
}
func (d *decoder[T]) kUint(_ *decFnInfo, rv reflect.Value) {
rvSetUint(rv, uint(chkOvf.UintV(d.d.DecodeUint64(), uintBitsize)))
}
func (d *decoder[T]) kUintptr(_ *decFnInfo, rv reflect.Value) {
rvSetUintptr(rv, uintptr(chkOvf.UintV(d.d.DecodeUint64(), uintBitsize)))
}
func (d *decoder[T]) kUint8(_ *decFnInfo, rv reflect.Value) {
rvSetUint8(rv, uint8(chkOvf.UintV(d.d.DecodeUint64(), 8)))
}
func (d *decoder[T]) kUint16(_ *decFnInfo, rv reflect.Value) {
rvSetUint16(rv, uint16(chkOvf.UintV(d.d.DecodeUint64(), 16)))
}
func (d *decoder[T]) kUint32(_ *decFnInfo, rv reflect.Value) {
rvSetUint32(rv, uint32(chkOvf.UintV(d.d.DecodeUint64(), 32)))
}
func (d *decoder[T]) kUint64(_ *decFnInfo, rv reflect.Value) {
rvSetUint64(rv, d.d.DecodeUint64())
}
func (d *decoder[T]) kInterfaceNaked(f *decFnInfo) (rvn reflect.Value) {
// nil interface:
// use some hieristics to decode it appropriately
// based on the detected next value in the stream.
n := d.naked()
d.d.DecodeNaked()
// We cannot decode non-nil stream value into nil interface with methods (e.g. io.Reader).
// Howver, it is possible that the user has ways to pass in a type for a given interface
// - MapType
// - SliceType
// - Extensions
//
// Consequently, we should relax this. Put it behind a const flag for now.
if decFailNonEmptyIntf && f.ti.numMeth > 0 {
halt.errorf("cannot decode non-nil codec value into nil %v (%v methods)", f.ti.rt, f.ti.numMeth)
}
// We generally make a pointer to the container here, and pass along,
// so that they will be initialized later when we know the length of the collection.
switch n.v {
case valueTypeMap:
mtid := d.mtid
if mtid == 0 {
if d.jsms { // if json, default to a map type with string keys
mtid = mapStrIntfTypId // for json performance
} else {
mtid = mapIntfIntfTypId
}
}
if mtid == mapStrIntfTypId {
var v2 map[string]interface{}
d.decode(&v2)
rvn = rv4iptr(&v2).Elem()
} else if mtid == mapIntfIntfTypId {
var v2 map[interface{}]interface{}
d.decode(&v2)
rvn = rv4iptr(&v2).Elem()
} else if d.mtr {
rvn = reflect.New(d.h.MapType)
d.decode(rv2i(rvn))
rvn = rvn.Elem()
} else {
// // made map is fully initialized for direct modification.
// // There's no need to make a pointer to it first.
// rvn = makeMapReflect(d.h.MapType, 0)
rvn = rvZeroAddrK(d.h.MapType, reflect.Map)
d.decodeValue(rvn, nil)
}
case valueTypeArray:
if d.stid == 0 || d.stid == intfSliceTypId {
var v2 []interface{}
d.decode(&v2)
rvn = rv4iptr(&v2).Elem()
} else if d.str {
rvn = reflect.New(d.h.SliceType)
d.decode(rv2i(rvn))
rvn = rvn.Elem()
} else {
rvn = rvZeroAddrK(d.h.SliceType, reflect.Slice)
d.decodeValue(rvn, nil)
}
if d.h.PreferArrayOverSlice {
rvn = rvGetArray4Slice(rvn)
}
case valueTypeExt:
tag, bytes := n.u, n.l // calling decode below might taint the values
bfn := d.h.getExtForTag(tag)
var re = RawExt{Tag: tag}
if bytes == nil {
// one of the InterfaceExt ones: json and cbor.
// (likely cbor, as json has no tagging support and won't reveal valueTypeExt)
if bfn == nil {
d.decode(&re.Value)
rvn = rv4iptr(&re).Elem()
} else if bfn.ext == SelfExt {
rvn = rvZeroAddrK(bfn.rt, bfn.rt.Kind())
d.decodeValue(rvn, d.fnNoExt(bfn.rt))
} else {
rvn = reflect.New(bfn.rt)
d.interfaceExtConvertAndDecode(rv2i(rvn), bfn.ext)
rvn = rvn.Elem()
}
} else {
// one of the BytesExt ones: binc, msgpack, simple
if bfn == nil {
re.setData(bytes, false)
rvn = rv4iptr(&re).Elem()
} else {
rvn = reflect.New(bfn.rt)
if bfn.ext == SelfExt {
sideDecode(d.hh, &d.h.sideDecPool, func(sd decoderI) { oneOffDecode(sd, rv2i(rvn), bytes, bfn.rt, true) })
} else {
bfn.ext.ReadExt(rv2i(rvn), bytes)
}
rvn = rvn.Elem()
}
}
// if struct/array, directly store pointer into the interface
if d.h.PreferPointerForStructOrArray && rvn.CanAddr() {
if rk := rvn.Kind(); rk == reflect.Array || rk == reflect.Struct {
rvn = rvn.Addr()
}
}
case valueTypeNil:
// rvn = reflect.Zero(f.ti.rt)
// no-op
case valueTypeInt:
rvn = n.ri()
case valueTypeUint:
rvn = n.ru()
case valueTypeFloat:
rvn = n.rf()
case valueTypeBool:
rvn = n.rb()
case valueTypeString, valueTypeSymbol:
rvn = n.rs()
case valueTypeBytes:
rvn = n.rl()
case valueTypeTime:
rvn = n.rt()
default:
halt.errorStr2("kInterfaceNaked: unexpected valueType: ", n.v.String())
}
return
}
func (d *decoder[T]) kInterface(f *decFnInfo, rv reflect.Value) {
// Note: A consequence of how kInterface works, is that
// if an interface already contains something, we try
// to decode into what was there before.
// We do not replace with a generic value (as got from decodeNaked).
//
// every interface passed here MUST be settable.
//
// ensure you call rvSetIntf(...) before returning.
isnilrv := rvIsNil(rv)
var rvn reflect.Value
if d.h.InterfaceReset {
// check if mapping to a type: if so, initialize it and move on
rvn = d.h.intf2impl(f.ti.rtid)
if !rvn.IsValid() {
rvn = d.kInterfaceNaked(f)
if rvn.IsValid() {
rvSetIntf(rv, rvn)
} else if !isnilrv {
decSetNonNilRV2Zero4Intf(rv)
}
return
}
} else if isnilrv {
// check if mapping to a type: if so, initialize it and move on
rvn = d.h.intf2impl(f.ti.rtid)
if !rvn.IsValid() {
rvn = d.kInterfaceNaked(f)
if rvn.IsValid() {
rvSetIntf(rv, rvn)
}
return
}
} else {
// now we have a non-nil interface value, meaning it contains a type
rvn = rv.Elem()
}
// rvn is now a non-interface type
canDecode, _ := isDecodeable(rvn)
// Note: interface{} is settable, but underlying type may not be.
// Consequently, we MAY have to allocate a value (containing the underlying value),
// decode into it, and reset the interface to that new value.
if !canDecode {
rvn2 := d.oneShotAddrRV(rvn.Type(), rvn.Kind())
rvSetDirect(rvn2, rvn)
rvn = rvn2
}
d.decodeValue(rvn, nil)
rvSetIntf(rv, rvn)
}
func (d *decoder[T]) kStructField(si *structFieldInfo, rv reflect.Value) {
if d.d.TryNil() {
rv = si.fieldNoAlloc(rv, true)
if rv.IsValid() {
decSetNonNilRV2Zero(rv)
}
} else if si.decBuiltin {
rv = rvAddr(si.fieldAlloc(rv), si.ptrTyp)
d.decode(rv2i(rv))
} else {
fn := d.fn(si.baseTyp)
rv = si.fieldAlloc(rv)
if fn.i.addrD {
rv = rvAddr(rv, si.ptrTyp)
}
fn.fd(d, &fn.i, rv)
}
}
func (d *decoder[T]) kStructSimple(f *decFnInfo, rv reflect.Value) {
_ = d.d // early asserts d, d.d are not nil once
ctyp := d.d.ContainerType()
ti := f.ti
if ctyp == valueTypeMap {
containerLen := d.mapStart(d.d.ReadMapStart())
if containerLen == 0 {
d.mapEnd()
return
}
hasLen := containerLen >= 0
var rvkencname []byte
for j := 0; d.containerNext(j, containerLen, hasLen); j++ {
d.mapElemKey(j == 0)
sab, att := d.d.DecodeStringAsBytes()
rvkencname = d.usableStructFieldNameBytes(rvkencname, sab, att)
d.mapElemValue()
if si := ti.siForEncName(rvkencname); si != nil {
d.kStructField(si, rv)
} else {
d.structFieldNotFound(-1, stringView(rvkencname))
}
}
d.mapEnd()
} else if ctyp == valueTypeArray {
containerLen := d.arrayStart(d.d.ReadArrayStart())
if containerLen == 0 {
d.arrayEnd()
return
}
// Not much gain from doing it two ways for array (used less frequently than structs).
tisfi := ti.sfi.source()
hasLen := containerLen >= 0
// iterate all the items in the stream.
// - if mapped elem-wise to a field, handle it
// - if more stream items than can be mapped, error it
for j := 0; d.containerNext(j, containerLen, hasLen); j++ {
d.arrayElem(j == 0)
if j < len(tisfi) {
d.kStructField(tisfi[j], rv)
} else {
d.structFieldNotFound(j, "")
}
}
d.arrayEnd()
} else {
halt.onerror(errNeedMapOrArrayDecodeToStruct)
}
}
func (d *decoder[T]) kStruct(f *decFnInfo, rv reflect.Value) {
_ = d.d // early asserts d, d.d are not nil once
ctyp := d.d.ContainerType()
ti := f.ti
var mf MissingFielder
if ti.flagMissingFielder {
mf = rv2i(rv).(MissingFielder)
} else if ti.flagMissingFielderPtr {
mf = rv2i(rvAddr(rv, ti.ptr)).(MissingFielder)
}
if ctyp == valueTypeMap {
containerLen := d.mapStart(d.d.ReadMapStart())
if containerLen == 0 {
d.mapEnd()
return
}
hasLen := containerLen >= 0
var name2 []byte
var rvkencname []byte
tkt := ti.keyType
for j := 0; d.containerNext(j, containerLen, hasLen); j++ {
d.mapElemKey(j == 0)
// use if-else since <8 branches and we need good branch prediction for string
if tkt == valueTypeString {
sab, att := d.d.DecodeStringAsBytes()
rvkencname = d.usableStructFieldNameBytes(rvkencname, sab, att)
} else if tkt == valueTypeInt {
rvkencname = strconv.AppendInt(d.b[:0], d.d.DecodeInt64(), 10)
} else if tkt == valueTypeUint {
rvkencname = strconv.AppendUint(d.b[:0], d.d.DecodeUint64(), 10)
} else if tkt == valueTypeFloat {
rvkencname = strconv.AppendFloat(d.b[:0], d.d.DecodeFloat64(), 'f', -1, 64)
} else {
halt.errorStr2("invalid struct key type: ", ti.keyType.String())
}
d.mapElemValue()
if si := ti.siForEncName(rvkencname); si != nil {
d.kStructField(si, rv)
} else if mf != nil {
// store rvkencname in new []byte, as it previously shares Decoder.b, which is used in decode
name2 = append(name2[:0], rvkencname...)
var f interface{}
d.decode(&f)
if !mf.CodecMissingField(name2, f) && d.h.ErrorIfNoField {
halt.errorStr2("no matching struct field when decoding stream map with key: ", stringView(name2))
}
} else {
d.structFieldNotFound(-1, stringView(rvkencname))
}
}
d.mapEnd()
} else if ctyp == valueTypeArray {
containerLen := d.arrayStart(d.d.ReadArrayStart())
if containerLen == 0 {
d.arrayEnd()
return
}
// Not much gain from doing it two ways for array.
// Arrays are not used as much for structs.
tisfi := ti.sfi.source()
hasLen := containerLen >= 0
// iterate all the items in the stream
// if mapped elem-wise to a field, handle it
// if more stream items than can be mapped, error it
for j := 0; d.containerNext(j, containerLen, hasLen); j++ {
d.arrayElem(j == 0)
if j < len(tisfi) {
d.kStructField(tisfi[j], rv)
} else {
d.structFieldNotFound(j, "")
}
}
d.arrayEnd()
} else {
halt.onerror(errNeedMapOrArrayDecodeToStruct)
}
}
func (d *decoder[T]) kSlice(f *decFnInfo, rv reflect.Value) {
_ = d.d // early asserts d, d.d are not nil once
// A slice can be set from a map or array in stream.
// This way, the order can be kept (as order is lost with map).
// Note: rv is a slice type here - guaranteed
ti := f.ti
rvCanset := rv.CanSet()
ctyp := d.d.ContainerType()
if ctyp == valueTypeBytes || ctyp == valueTypeString {
// you can only decode bytes or string in the stream into a slice or array of bytes
if !(ti.rtid == uint8SliceTypId || ti.elemkind == uint8(reflect.Uint8)) {
halt.errorf("bytes/string in stream must decode into slice/array of bytes, not %v", ti.rt)
}
rvbs := rvGetBytes(rv)
if rvCanset {
bs2, bst := d.decodeBytesInto(rvbs, false)
if bst != dBytesIntoParamOut {
rvSetBytes(rv, bs2)
}
} else {
// not addressable byte slice, so do not decode into it past the length
d.decodeBytesInto(rvbs[:len(rvbs):len(rvbs)], true)
}
return
}
// only expects valueType(Array|Map) - never Nil
var containerLenS int
isArray := ctyp == valueTypeArray
if isArray {
containerLenS = d.arrayStart(d.d.ReadArrayStart())
} else if ctyp == valueTypeMap {
containerLenS = d.mapStart(d.d.ReadMapStart()) * 2
} else {
halt.errorStr2("decoding into a slice, expect map/array - got ", ctyp.String())
}
// an array can never return a nil slice. so no need to check f.array here.
if containerLenS == 0 {
if rvCanset {
if rvIsNil(rv) {
rvSetDirect(rv, rvSliceZeroCap(ti.rt))
} else {
rvSetSliceLen(rv, 0)
}
}
if isArray {
d.arrayEnd()
} else {
d.mapEnd()
}
return
}
rtelem0Mut := !scalarBitset.isset(ti.elemkind)
rtelem := ti.elem
for k := reflect.Kind(ti.elemkind); k == reflect.Ptr; k = rtelem.Kind() {
rtelem = rtelem.Elem()
}
var fn *decFn[T]
var rvChanged bool
var rv0 = rv
var rv9 reflect.Value
rvlen := rvLenSlice(rv)
rvcap := rvCapSlice(rv)
maxInitLen := d.maxInitLen()
hasLen := containerLenS >= 0
if hasLen {
if containerLenS > rvcap {
oldRvlenGtZero := rvlen > 0
rvlen1 := int(decInferLen(containerLenS, maxInitLen, uint(ti.elemsize)))
if rvlen1 == rvlen {
} else if rvlen1 <= rvcap {
if rvCanset {
rvlen = rvlen1
rvSetSliceLen(rv, rvlen)
}
} else if rvCanset { // rvlen1 > rvcap
rvlen = rvlen1
rv, rvCanset = rvMakeSlice(rv, f.ti, rvlen, rvlen)
rvcap = rvlen
rvChanged = !rvCanset
} else { // rvlen1 > rvcap && !canSet
halt.errorStr("cannot decode into non-settable slice")
}
if rvChanged && oldRvlenGtZero && rtelem0Mut {
rvCopySlice(rv, rv0, rtelem) // only copy up to length NOT cap i.e. rv0.Slice(0, rvcap)
}
} else if containerLenS != rvlen {
if rvCanset {
rvlen = containerLenS
rvSetSliceLen(rv, rvlen)
}
}
}
// consider creating new element once, and just decoding into it.
var elemReset = d.h.SliceElementReset
// when decoding into slices, there may be more values in the stream than the slice length.
// decodeValue handles this better when coming from an addressable value (known to reflect.Value).
// Consequently, builtin handling skips slices.
var rtelemIsPtr bool
var rtelemElem reflect.Type
builtin := ti.tielem.flagDecBuiltin
if builtin {
rtelemIsPtr = ti.elemkind == uint8(reflect.Ptr)
if rtelemIsPtr {
rtelemElem = ti.elem.Elem()
}
}
var j int
for ; d.containerNext(j, containerLenS, hasLen); j++ {
if j == 0 {
if rvIsNil(rv) { // means hasLen = false
if rvCanset {
rvlen = int(decInferLen(containerLenS, maxInitLen, uint(ti.elemsize)))
rv, rvCanset = rvMakeSlice(rv, f.ti, rvlen, rvlen)
rvcap = rvlen
rvChanged = !rvCanset
} else {
halt.errorStr("cannot decode into non-settable slice")
}
}
if fn == nil {
fn = d.fn(rtelem)
}
}
if ctyp == valueTypeArray {
d.arrayElem(j == 0)
} else if j&1 == 0 {
d.mapElemKey(j == 0)
} else {
d.mapElemValue()
}
// if indefinite, etc, then expand the slice if necessary
if j >= rvlen {
// expand the slice up to the cap.
// Note that we did, so we have to reset it later.
if rvlen < rvcap {
rvlen = rvcap
if rvCanset {
rvSetSliceLen(rv, rvlen)
} else if rvChanged {
rv = rvSlice(rv, rvlen)
} else {
halt.onerror(errExpandSliceCannotChange)
}
} else {
if !(rvCanset || rvChanged) {
halt.onerror(errExpandSliceCannotChange)
}
rv, rvcap, rvCanset = rvGrowSlice(rv, f.ti, rvcap, 1)
// note: 1 requested is hint/minimum - new capacity with more space
rvlen = rvcap
rvChanged = !rvCanset
}
}
// we check if we can make this an addr, and do builtin
// e.g. if []ints, then fastpath should handle it?
// but if not, we should treat it as each element is *int, and decode into it.
rv9 = rvArrayIndex(rv, j, f.ti, true)
if elemReset {
rvSetZero(rv9)
}
if d.d.TryNil() {
rvSetZero(rv9)
} else if builtin {
if rtelemIsPtr {
if rvIsNil(rv9) {
rvSetDirect(rv9, reflect.New(rtelemElem))
}
d.decode(rv2i(rv9))
} else {
d.decode(rv2i(rvAddr(rv9, ti.tielem.ptr))) // d.decode(rv2i(rv9.Addr()))
}
} else {
d.decodeValueNoCheckNil(rv9, fn)
}
}
if j < rvlen {
if rvCanset {
rvSetSliceLen(rv, j)
} else if rvChanged {
rv = rvSlice(rv, j)
}
// rvlen = j
} else if j == 0 && rvIsNil(rv) {
if rvCanset {
rv = rvSliceZeroCap(ti.rt)
rvCanset = false
rvChanged = true
}
}
if isArray {
d.arrayEnd()
} else {
d.mapEnd()
}
if rvChanged { // infers rvCanset=true, so it can be reset
rvSetDirect(rv0, rv)
}
}
func (d *decoder[T]) kArray(f *decFnInfo, rv reflect.Value) {
_ = d.d // early asserts d, d.d are not nil once
// An array can be set from a map or array in stream.
ti := f.ti
ctyp := d.d.ContainerType()
if handleBytesWithinKArray && (ctyp == valueTypeBytes || ctyp == valueTypeString) {
// you can only decode bytes or string in the stream into a slice or array of bytes
if ti.elemkind != uint8(reflect.Uint8) {
halt.errorf("bytes/string in stream can decode into array of bytes, but not %v", ti.rt)
}
rvbs := rvGetArrayBytes(rv, nil)
d.decodeBytesInto(rvbs, true)
return
}
// only expects valueType(Array|Map) - never Nil
var containerLenS int
isArray := ctyp == valueTypeArray
if isArray {
containerLenS = d.arrayStart(d.d.ReadArrayStart())
} else if ctyp == valueTypeMap {
containerLenS = d.mapStart(d.d.ReadMapStart()) * 2
} else {
halt.errorStr2("decoding into a slice, expect map/array - got ", ctyp.String())
}
// an array can never return a nil slice. so no need to check f.array here.
if containerLenS == 0 {
if isArray {
d.arrayEnd()
} else {
d.mapEnd()
}
return
}
rtelem := ti.elem
for k := reflect.Kind(ti.elemkind); k == reflect.Ptr; k = rtelem.Kind() {
rtelem = rtelem.Elem()
}
var rv9 reflect.Value
rvlen := rv.Len() // same as cap
hasLen := containerLenS >= 0
if hasLen && containerLenS > rvlen {
halt.errorf("cannot decode into array with length: %v, less than container length: %v", any(rvlen), any(containerLenS))
}
// consider creating new element once, and just decoding into it.
var elemReset = d.h.SliceElementReset
var rtelemIsPtr bool
var rtelemElem reflect.Type
var fn *decFn[T]
builtin := ti.tielem.flagDecBuiltin
if builtin {
rtelemIsPtr = ti.elemkind == uint8(reflect.Ptr)
if rtelemIsPtr {
rtelemElem = ti.elem.Elem()
}
} else {
fn = d.fn(rtelem)
}
for j := 0; d.containerNext(j, containerLenS, hasLen); j++ {
if ctyp == valueTypeArray {
d.arrayElem(j == 0)
} else if j&1 == 0 {
d.mapElemKey(j == 0)
} else {
d.mapElemValue()
}
// note that you cannot expand the array if indefinite and we go past array length
if j >= rvlen {
d.arrayCannotExpand(rvlen, j+1)
d.swallow()
continue
}
rv9 = rvArrayIndex(rv, j, f.ti, false)
if elemReset {
rvSetZero(rv9)
}
if d.d.TryNil() {
rvSetZero(rv9)
} else if builtin {
if rtelemIsPtr {
if rvIsNil(rv9) {
rvSetDirect(rv9, reflect.New(rtelemElem))
}
d.decode(rv2i(rv9))
} else {
d.decode(rv2i(rvAddr(rv9, ti.tielem.ptr))) // d.decode(rv2i(rv9.Addr()))
}
} else {
d.decodeValueNoCheckNil(rv9, fn)
}
}
if isArray {
d.arrayEnd()
} else {
d.mapEnd()
}
}
func (d *decoder[T]) kChan(f *decFnInfo, rv reflect.Value) {
_ = d.d // early asserts d, d.d are not nil once
// A slice can be set from a map or array in stream.
// This way, the order can be kept (as order is lost with map).
ti := f.ti
if ti.chandir&uint8(reflect.SendDir) == 0 {
halt.errorStr("receive-only channel cannot be decoded")
}
ctyp := d.d.ContainerType()
if ctyp == valueTypeBytes || ctyp == valueTypeString {
// you can only decode bytes or string in the stream into a slice or array of bytes
if !(ti.rtid == uint8SliceTypId || ti.elemkind == uint8(reflect.Uint8)) {
halt.errorf("bytes/string in stream must decode into slice/array of bytes, not %v", ti.rt)
}
bs2, _ := d.d.DecodeBytes()
irv := rv2i(rv)
ch, ok := irv.(chan<- byte)
if !ok {
ch = irv.(chan byte)
}
for _, b := range bs2 {
ch <- b
}
return
}
var rvCanset = rv.CanSet()
// only expects valueType(Array|Map) - never Nil
var containerLenS int
isArray := ctyp == valueTypeArray
if isArray {
containerLenS = d.arrayStart(d.d.ReadArrayStart())
} else if ctyp == valueTypeMap {
containerLenS = d.mapStart(d.d.ReadMapStart()) * 2
} else {
halt.errorStr2("decoding into a slice, expect map/array - got ", ctyp.String())
}
// an array can never return a nil slice. so no need to check f.array here.
if containerLenS == 0 {
if rvCanset && rvIsNil(rv) {
rvSetDirect(rv, reflect.MakeChan(ti.rt, 0))
}
if isArray {
d.arrayEnd()
} else {
d.mapEnd()
}
return
}
rtelem := ti.elem
useTransient := decUseTransient && ti.elemkind != byte(reflect.Ptr) && ti.tielem.flagCanTransient
for k := reflect.Kind(ti.elemkind); k == reflect.Ptr; k = rtelem.Kind() {
rtelem = rtelem.Elem()
}
var fn *decFn[T]
var rvChanged bool
var rv0 = rv
var rv9 reflect.Value
var rvlen int // = rv.Len()
hasLen := containerLenS >= 0
maxInitLen := d.maxInitLen()
for j := 0; d.containerNext(j, containerLenS, hasLen); j++ {
if j == 0 {
if rvIsNil(rv) {
if hasLen {
rvlen = int(decInferLen(containerLenS, maxInitLen, uint(ti.elemsize)))
} else {
rvlen = decDefChanCap
}
if rvCanset {
rv = reflect.MakeChan(ti.rt, rvlen)
rvChanged = true
} else {
halt.errorStr("cannot decode into non-settable chan")
}
}
if fn == nil {
fn = d.fn(rtelem)
}
}
if ctyp == valueTypeArray {
d.arrayElem(j == 0)
} else if j&1 == 0 {
d.mapElemKey(j == 0)
} else {
d.mapElemValue()
}
if rv9.IsValid() {
rvSetZero(rv9)
} else if useTransient {
rv9 = d.perType.TransientAddrK(ti.elem, reflect.Kind(ti.elemkind))
} else {
rv9 = rvZeroAddrK(ti.elem, reflect.Kind(ti.elemkind))
}
if !d.d.TryNil() {
d.decodeValueNoCheckNil(rv9, fn)
}
rv.Send(rv9)
}
if isArray {
d.arrayEnd()
} else {
d.mapEnd()
}
if rvChanged { // infers rvCanset=true, so it can be reset
rvSetDirect(rv0, rv)
}
}
func (d *decoder[T]) kMap(f *decFnInfo, rv reflect.Value) {
_ = d.d // early asserts d, d.d are not nil once
containerLen := d.mapStart(d.d.ReadMapStart())
ti := f.ti
if rvIsNil(rv) {
rvlen := int(decInferLen(containerLen, d.maxInitLen(), uint(ti.keysize+ti.elemsize)))
rvSetDirect(rv, makeMapReflect(ti.rt, rvlen))
}
if containerLen == 0 {
d.mapEnd()
return
}
ktype, vtype := ti.key, ti.elem
ktypeId := rt2id(ktype)
vtypeKind := reflect.Kind(ti.elemkind)
ktypeKind := reflect.Kind(ti.keykind)
mparams := getMapReqParams(ti)
// kfast := mapKeyFastKindFor(ktypeKind)
// visindirect := mapStoresElemIndirect(uintptr(ti.elemsize))
// visref := refBitset.isset(ti.elemkind)
vtypePtr := vtypeKind == reflect.Ptr
ktypePtr := ktypeKind == reflect.Ptr
vTransient := decUseTransient && !vtypePtr && ti.tielem.flagCanTransient
// keys are transient iff values are transient first
kTransient := vTransient && !ktypePtr && ti.tikey.flagCanTransient
var vtypeElem reflect.Type
var keyFn, valFn *decFn[T]
var ktypeLo, vtypeLo = ktype, vtype
if ktypeKind == reflect.Ptr {
for ktypeLo = ktype.Elem(); ktypeLo.Kind() == reflect.Ptr; ktypeLo = ktypeLo.Elem() {
}
}
if vtypePtr {
vtypeElem = vtype.Elem()
for vtypeLo = vtypeElem; vtypeLo.Kind() == reflect.Ptr; vtypeLo = vtypeLo.Elem() {
}
}
rvkMut := !scalarBitset.isset(ti.keykind) // if ktype is immutable, then re-use the same rvk.
rvvMut := !scalarBitset.isset(ti.elemkind)
rvvCanNil := isnilBitset.isset(ti.elemkind)
// rvk: key
// rvkn: if non-mutable, on each iteration of loop, set rvk to this
// rvv: value
// rvvn: if non-mutable, on each iteration of loop, set rvv to this
// if mutable, may be used as a temporary value for local-scoped operations
// rvva: if mutable, used as transient value for use for key lookup
// rvvz: zero value of map value type, used to do a map set when nil is found in stream
var rvk, rvkn, rvv, rvvn, rvva, rvvz reflect.Value
// we do a doMapGet if kind is mutable, and InterfaceReset=true if interface
var doMapGet, doMapSet bool
if !d.h.MapValueReset {
if rvvMut && (vtypeKind != reflect.Interface || !d.h.InterfaceReset) {
doMapGet = true
rvva = mapAddrLoopvarRV(vtype, vtypeKind)
}
}
ktypeIsString := ktypeId == stringTypId
ktypeIsIntf := ktypeId == intfTypId
hasLen := containerLen >= 0
var kstr2bs []byte
var kstr string
var mapKeyStringSharesBytesBuf bool
var att dBytesAttachState
// Use a possibly transient (map) value (and key), to reduce allocation
// when decoding into slices, there may be more values in the stream than the slice length.
// decodeValue handles this better when coming from an addressable value (known to reflect.Value).
// Consequently, builtin handling skips slices.
var vElem, kElem reflect.Type
kbuiltin := ti.tikey.flagDecBuiltin && ti.keykind != uint8(reflect.Slice)
vbuiltin := ti.tielem.flagDecBuiltin // && ti.elemkind != uint8(reflect.Slice)
if kbuiltin && ktypePtr {
kElem = ti.key.Elem()
}
if vbuiltin && vtypePtr {
vElem = ti.elem.Elem()
}
for j := 0; d.containerNext(j, containerLen, hasLen); j++ {
mapKeyStringSharesBytesBuf = false
kstr = ""
if j == 0 {
// if vtypekind is a scalar and thus value will be decoded using TransientAddrK,
// then it is ok to use TransientAddr2K for the map key.
if kTransient {
rvk = d.perType.TransientAddr2K(ktype, ktypeKind)
} else {
rvk = rvZeroAddrK(ktype, ktypeKind)
}
if !rvkMut {
rvkn = rvk
}
if !rvvMut {
if vTransient {
rvvn = d.perType.TransientAddrK(vtype, vtypeKind)
} else {
rvvn = rvZeroAddrK(vtype, vtypeKind)
}
}
if !ktypeIsString && keyFn == nil {
keyFn = d.fn(ktypeLo)
}
if valFn == nil {
valFn = d.fn(vtypeLo)
}
} else if rvkMut {
rvSetZero(rvk)
} else {
rvk = rvkn
}
d.mapElemKey(j == 0)
if d.d.TryNil() {
rvSetZero(rvk)
} else if ktypeIsString {
kstr2bs, att = d.d.DecodeStringAsBytes()
kstr, mapKeyStringSharesBytesBuf = d.bytes2Str(kstr2bs, att)
rvSetString(rvk, kstr)
} else {
if kbuiltin {
if ktypePtr {
if rvIsNil(rvk) {
rvSetDirect(rvk, reflect.New(kElem))
}
d.decode(rv2i(rvk))
} else {
d.decode(rv2i(rvAddr(rvk, ti.tikey.ptr)))
}
} else {
d.decodeValueNoCheckNil(rvk, keyFn)
}
// special case if interface wrapping a byte slice
if ktypeIsIntf {
if rvk2 := rvk.Elem(); rvk2.IsValid() && rvk2.Type() == uint8SliceTyp {
kstr2bs = rvGetBytes(rvk2)
kstr, mapKeyStringSharesBytesBuf = d.bytes2Str(kstr2bs, dBytesAttachView)
rvSetIntf(rvk, rv4istr(kstr))
}
// NOTE: consider failing early if map/slice/func
}
}
// TryNil will try to read from the stream and check if a nil marker.
//
// When using ioDecReader (specifically in bufio mode), this TryNil call could
// override part of the buffer used for the string key.
//
// To mitigate this, we do a special check for ioDecReader in bufio mode.
if mapKeyStringSharesBytesBuf && d.bufio {
if ktypeIsString {
rvSetString(rvk, d.detach2Str(kstr2bs, att))
} else { // ktypeIsIntf
rvSetIntf(rvk, rv4istr(d.detach2Str(kstr2bs, att)))
}
mapKeyStringSharesBytesBuf = false
}
d.mapElemValue()
if d.d.TryNil() {
if mapKeyStringSharesBytesBuf {
if ktypeIsString {
rvSetString(rvk, d.detach2Str(kstr2bs, att))
} else { // ktypeIsIntf
rvSetIntf(rvk, rv4istr(d.detach2Str(kstr2bs, att)))
}
}
// since a map, we have to set zero value if needed
if !rvvz.IsValid() {
rvvz = rvZeroK(vtype, vtypeKind)
}
mapSet(rv, rvk, rvvz, mparams)
continue
}
// there is non-nil content in the stream to decode ...
// consequently, it's ok to just directly create new value to the pointer (if vtypePtr)
// set doMapSet to false iff u do a get, and the return value is a non-nil pointer
doMapSet = true
if !rvvMut {
rvv = rvvn
} else if !doMapGet {
goto NEW_RVV
} else {
rvv = mapGet(rv, rvk, rvva, mparams)
if !rvv.IsValid() || (rvvCanNil && rvIsNil(rvv)) {
goto NEW_RVV
}
switch vtypeKind {
case reflect.Ptr, reflect.Map: // ok to decode directly into map
doMapSet = false
case reflect.Interface:
// if an interface{}, just decode into it iff a non-nil ptr/map, else allocate afresh
rvvn = rvv.Elem()
if k := rvvn.Kind(); (k == reflect.Ptr || k == reflect.Map) && !rvIsNil(rvvn) {
d.decodeValueNoCheckNil(rvvn, nil) // valFn is incorrect here
continue
}
// make addressable (so we can set the interface)
rvvn = rvZeroAddrK(vtype, vtypeKind)
rvSetIntf(rvvn, rvv)
rvv = rvvn
default:
// make addressable (so you can set the slice/array elements, etc)
if vTransient {
rvvn = d.perType.TransientAddrK(vtype, vtypeKind)
} else {
rvvn = rvZeroAddrK(vtype, vtypeKind)
}
rvSetDirect(rvvn, rvv)
rvv = rvvn
}
}
goto DECODE_VALUE_NO_CHECK_NIL
NEW_RVV:
if vtypePtr {
rvv = reflect.New(vtypeElem) // non-nil in stream, so allocate value
} else if vTransient {
rvv = d.perType.TransientAddrK(vtype, vtypeKind)
} else {
rvv = rvZeroAddrK(vtype, vtypeKind)
}
DECODE_VALUE_NO_CHECK_NIL:
if doMapSet && mapKeyStringSharesBytesBuf {
if ktypeIsString {
rvSetString(rvk, d.detach2Str(kstr2bs, att))
} else { // ktypeIsIntf
rvSetIntf(rvk, rv4istr(d.detach2Str(kstr2bs, att)))
}
}
if vbuiltin {
if vtypePtr {
if rvIsNil(rvv) {
rvSetDirect(rvv, reflect.New(vElem))
}
d.decode(rv2i(rvv))
} else {
d.decode(rv2i(rvAddr(rvv, ti.tielem.ptr)))
}
} else {
d.decodeValueNoCheckNil(rvv, valFn)
}
if doMapSet {
mapSet(rv, rvk, rvv, mparams)
}
}
d.mapEnd()
}
func (d *decoder[T]) init(h Handle) {
initHandle(h)
callMake(&d.d)
d.hh = h
d.h = h.getBasicHandle()
// d.zeroCopy = d.h.ZeroCopy
// d.be = h.isBinary()
d.err = errDecoderNotInitialized
if d.h.InternString && d.is == nil {
d.is.init()
}
// d.fp = fastpathDList[T]()
d.fp = d.d.init(h, &d.decoderBase, d).(*fastpathDs[T]) // should set js, cbor, bytes, etc
// d.cbreak = d.js || d.cbor
if d.bytes {
d.rtidFn = &d.h.rtidFnsDecBytes
d.rtidFnNoExt = &d.h.rtidFnsDecNoExtBytes
} else {
d.bufio = d.h.ReaderBufferSize > 0
d.rtidFn = &d.h.rtidFnsDecIO
d.rtidFnNoExt = &d.h.rtidFnsDecNoExtIO
}
d.reset()
// NOTE: do not initialize d.n here. It is lazily initialized in d.naked()
}
func (d *decoder[T]) reset() {
d.d.reset()
d.err = nil
d.c = 0
d.depth = 0
d.calls = 0
// reset all things which were cached from the Handle, but could change
d.maxdepth = decDefMaxDepth
if d.h.MaxDepth > 0 {
d.maxdepth = d.h.MaxDepth
}
d.mtid = 0
d.stid = 0
d.mtr = false
d.str = false
if d.h.MapType != nil {
d.mtid = rt2id(d.h.MapType)
_, d.mtr = fastpathAvIndex(d.mtid)
}
if d.h.SliceType != nil {
d.stid = rt2id(d.h.SliceType)
_, d.str = fastpathAvIndex(d.stid)
}
}
// Reset the Decoder with a new Reader to decode from,
// clearing all state from last run(s).
func (d *decoder[T]) Reset(r io.Reader) {
if d.bytes {
halt.onerror(errDecNoResetBytesWithReader)
}
d.reset()
if r == nil {
r = &eofReader
}
d.d.resetInIO(r)
}
// ResetBytes resets the Decoder with a new []byte to decode from,
// clearing all state from last run(s).
func (d *decoder[T]) ResetBytes(in []byte) {
if !d.bytes {
halt.onerror(errDecNoResetReaderWithBytes)
}
d.resetBytes(in)
}
func (d *decoder[T]) resetBytes(in []byte) {
d.reset()
if in == nil {
in = zeroByteSlice
}
d.d.resetInBytes(in)
}
// ResetString resets the Decoder with a new string to decode from,
// clearing all state from last run(s).
//
// It is a convenience function that calls ResetBytes with a
// []byte view into the string.
//
// This can be an efficient zero-copy if using default mode i.e. without codec.safe tag.
func (d *decoder[T]) ResetString(s string) {
d.ResetBytes(bytesView(s))
}
// Decode decodes the stream from reader and stores the result in the
// value pointed to by v. v cannot be a nil pointer. v can also be
// a reflect.Value of a pointer.
//
// Note that a pointer to a nil interface is not a nil pointer.
// If you do not know what type of stream it is, pass in a pointer to a nil interface.
// We will decode and store a value in that nil interface.
//
// Sample usages:
//
// // Decoding into a non-nil typed value
// var f float32
// err = codec.NewDecoder(r, handle).Decode(&f)
//
// // Decoding into nil interface
// var v interface{}
// dec := codec.NewDecoder(r, handle)
// err = dec.Decode(&v)
//
// When decoding into a nil interface{}, we will decode into an appropriate value based
// on the contents of the stream:
// - Numbers are decoded as float64, int64 or uint64.
// - Other values are decoded appropriately depending on the type:
// bool, string, []byte, time.Time, etc
// - Extensions are decoded as RawExt (if no ext function registered for the tag)
//
// Configurations exist on the Handle to override defaults
// (e.g. for MapType, SliceType and how to decode raw bytes).
//
// When decoding into a non-nil interface{} value, the mode of encoding is based on the
// type of the value. When a value is seen:
// - If an extension is registered for it, call that extension function
// - If it implements BinaryUnmarshaler, call its UnmarshalBinary(data []byte) error
// - Else decode it based on its reflect.Kind
//
// There are some special rules when decoding into containers (slice/array/map/struct).
// Decode will typically use the stream contents to UPDATE the container i.e. the values
// in these containers will not be zero'ed before decoding.
// - A map can be decoded from a stream map, by updating matching keys.
// - A slice can be decoded from a stream array,
// by updating the first n elements, where n is length of the stream.
// - A slice can be decoded from a stream map, by decoding as if
// it contains a sequence of key-value pairs.
// - A struct can be decoded from a stream map, by updating matching fields.
// - A struct can be decoded from a stream array,
// by updating fields as they occur in the struct (by index).
//
// This in-place update maintains consistency in the decoding philosophy (i.e. we ALWAYS update
// in place by default). However, the consequence of this is that values in slices or maps
// which are not zero'ed before hand, will have part of the prior values in place after decode
// if the stream doesn't contain an update for those parts.
//
// This in-place update can be disabled by configuring the MapValueReset and SliceElementReset
// decode options available on every handle.
//
// Furthermore, when decoding a stream map or array with length of 0 into a nil map or slice,
// we reset the destination map or slice to a zero-length value.
//
// However, when decoding a stream nil, we reset the destination container
// to its "zero" value (e.g. nil for slice/map, etc).
//
// Note: we allow nil values in the stream anywhere except for map keys.
// A nil value in the encoded stream where a map key is expected is treated as an error.
//
// Note that an error from a Decode call will make the Decoder unusable moving forward.
// This is because the state of the Decoder, it's input stream, etc are no longer stable.
// Any subsequent calls to Decode will trigger the same error.
func (d *decoder[T]) Decode(v interface{}) (err error) {
// tried to use closure, as runtime optimizes defer with no params.
// This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
// Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
defer panicValToErr(d, callRecoverSentinel, &d.err, &err, debugging)
d.mustDecode(v)
return
}
// MustDecode is like Decode, but panics if unable to Decode.
//
// Note: This provides insight to the code location that triggered the error.
//
// Note that an error from a Decode call will make the Decoder unusable moving forward.
// This is because the state of the Decoder, it's input stream, etc are no longer stable.
// Any subsequent calls to Decode will trigger the same error.
func (d *decoder[T]) MustDecode(v interface{}) {
defer panicValToErr(d, callRecoverSentinel, &d.err, nil, true)
d.mustDecode(v)
return
}
func (d *decoder[T]) mustDecode(v interface{}) {
halt.onerror(d.err)
if d.hh == nil {
halt.onerror(errNoFormatHandle)
}
// Top-level: v is a pointer and not nil.
d.calls++
d.decode(v)
d.calls--
}
// Release is a no-op.
//
// Deprecated: Pooled resources are not used with a Decoder.
// This method is kept for compatibility reasons only.
func (d *decoder[T]) Release() {}
func (d *decoder[T]) swallow() {
d.d.nextValueBytes()
}
func (d *decoder[T]) nextValueBytes() []byte {
return d.d.nextValueBytes()
}
func (d *decoder[T]) decode(iv interface{}) {
_ = d.d // early asserts d, d.d are not nil once
// a switch with only concrete types can be optimized.
// consequently, we deal with nil and interfaces outside the switch.
rv, ok := isNil(iv, true) // handle nil pointers also
if ok {
halt.onerror(errCannotDecodeIntoNil)
}
switch v := iv.(type) {
// case nil:
// case Selfer:
case *string:
*v = d.detach2Str(d.d.DecodeStringAsBytes())
case *bool:
*v = d.d.DecodeBool()
case *int:
*v = int(chkOvf.IntV(d.d.DecodeInt64(), intBitsize))
case *int8:
*v = int8(chkOvf.IntV(d.d.DecodeInt64(), 8))
case *int16:
*v = int16(chkOvf.IntV(d.d.DecodeInt64(), 16))
case *int32:
*v = int32(chkOvf.IntV(d.d.DecodeInt64(), 32))
case *int64:
*v = d.d.DecodeInt64()
case *uint:
*v = uint(chkOvf.UintV(d.d.DecodeUint64(), uintBitsize))
case *uint8:
*v = uint8(chkOvf.UintV(d.d.DecodeUint64(), 8))
case *uint16:
*v = uint16(chkOvf.UintV(d.d.DecodeUint64(), 16))
case *uint32:
*v = uint32(chkOvf.UintV(d.d.DecodeUint64(), 32))
case *uint64:
*v = d.d.DecodeUint64()
case *uintptr:
*v = uintptr(chkOvf.UintV(d.d.DecodeUint64(), uintBitsize))
case *float32:
*v = d.d.DecodeFloat32()
case *float64:
*v = d.d.DecodeFloat64()
case *complex64:
*v = complex(d.d.DecodeFloat32(), 0)
case *complex128:
*v = complex(d.d.DecodeFloat64(), 0)
case *[]byte:
*v, _ = d.decodeBytesInto(*v, false)
case []byte:
// not addressable byte slice, so do not decode into it past the length
d.decodeBytesInto(v[:len(v):len(v)], true)
case *time.Time:
*v = d.d.DecodeTime()
case *Raw:
*v = d.rawBytes()
case *interface{}:
d.decodeValue(rv4iptr(v), nil)
case reflect.Value:
if ok, _ = isDecodeable(v); !ok {
d.haltAsNotDecodeable(v)
}
d.decodeValue(v, nil)
default:
// we can't check non-predefined types, as they might be a Selfer or extension.
if skipFastpathTypeSwitchInDirectCall || !d.dh.fastpathDecodeTypeSwitch(iv, d) {
if !rv.IsValid() {
rv = reflect.ValueOf(iv)
}
if ok, _ = isDecodeable(rv); !ok {
d.haltAsNotDecodeable(rv)
}
d.decodeValue(rv, nil)
}
}
}
// decodeValue MUST be called by the actual value we want to decode into,
// not its addr or a reference to it.
//
// This way, we know if it is itself a pointer, and can handle nil in
// the stream effectively.
//
// Note that decodeValue will handle nil in the stream early, so that the
// subsequent calls i.e. kXXX methods, etc do not have to handle it themselves.
func (d *decoder[T]) decodeValue(rv reflect.Value, fn *decFn[T]) {
if d.d.TryNil() {
decSetNonNilRV2Zero(rv)
} else {
d.decodeValueNoCheckNil(rv, fn)
}
}
func (d *decoder[T]) decodeValueNoCheckNil(rv reflect.Value, fn *decFn[T]) {
// If stream is not containing a nil value, then we can deref to the base
// non-pointer value, and decode into that.
var rvp reflect.Value
var rvpValid bool
PTR:
if rv.Kind() == reflect.Ptr {
rvpValid = true
if rvIsNil(rv) {
rvSetDirect(rv, reflect.New(rv.Type().Elem()))
}
rvp = rv
rv = rv.Elem()
goto PTR
}
if fn == nil {
fn = d.fn(rv.Type())
}
if fn.i.addrD {
if rvpValid {
rv = rvp
} else if rv.CanAddr() {
rv = rvAddr(rv, fn.i.ti.ptr)
} else if fn.i.addrDf {
halt.errorStr("cannot decode into a non-pointer value")
}
}
fn.fd(d, &fn.i, rv)
}
func (d *decoder[T]) decodeAs(v interface{}, t reflect.Type, ext bool) {
if ext {
d.decodeValue(baseRV(v), d.fn(t))
} else {
d.decodeValue(baseRV(v), d.fnNoExt(t))
}
}
func (d *decoder[T]) structFieldNotFound(index int, rvkencname string) {
// Note: rvkencname is used only if there is an error, to pass into halt.errorf.
// Consequently, it is ok to pass in a stringView
// Since rvkencname may be a stringView, do NOT pass it to another function.
if d.h.ErrorIfNoField {
if index >= 0 {
halt.errorInt("no matching struct field found when decoding stream array at index ", int64(index))
} else if rvkencname != "" {
halt.errorStr2("no matching struct field found when decoding stream map with key ", rvkencname)
}
}
d.swallow()
}
// decodeBytesInto is a convenience delegate function to decDriver.DecodeBytes.
// It ensures that `in` is not a nil byte, before calling decDriver.DecodeBytes,
// as decDriver.DecodeBytes treats a nil as a hint to use its internal scratch buffer.
func (d *decoder[T]) decodeBytesInto(out []byte, mustFit bool) (v []byte, state dBytesIntoState) {
v, att := d.d.DecodeBytes()
if cap(v) == 0 || (att >= dBytesAttachViewZerocopy && !mustFit) {
// no need to detach (since mustFit=false)
// including v has no capacity (covers v == nil and []byte{})
return
}
if len(v) == 0 {
v = zeroByteSlice // cannot be re-sliced/appended to
return
}
if len(out) == len(v) {
state = dBytesIntoParamOut
} else if cap(out) >= len(v) {
out = out[:len(v)]
state = dBytesIntoParamOutSlice
} else if mustFit {
halt.errorf("bytes capacity insufficient for decoded bytes: got/expected: %d/%d", len(v), len(out))
} else {
out = make([]byte, len(v))
state = dBytesIntoNew
}
copy(out, v)
v = out
return
}
func (d *decoder[T]) rawBytes() (v []byte) {
// ensure that this is not a view into the bytes
// i.e. if necessary, make new copy always.
v = d.d.nextValueBytes()
if d.bytes && !d.h.ZeroCopy {
vv := make([]byte, len(v))
copy(vv, v) // using copy here triggers make+copy optimization eliding memclr
v = vv
}
return
}
func (d *decoder[T]) wrapErr(v error, err *error) {
*err = wrapCodecErr(v, d.hh.Name(), d.d.NumBytesRead(), false)
}
// NumBytesRead returns the number of bytes read
func (d *decoder[T]) NumBytesRead() int {
return d.d.NumBytesRead()
}
// ---- container tracking
// Note: We update the .c after calling the callback.
// This way, the callback can know what the last status was.
// MARKER: do not call mapEnd if mapStart returns containerLenNil.
// MARKER: optimize decoding since all formats do not truly support all decDriver'ish operations.
// - Read(Map|Array)Start is only supported by all formats.
// - CheckBreak is only supported by json and cbor.
// - Read(Map|Array)End is only supported by json.
// - Read(Map|Array)Elem(Kay|Value) is only supported by json.
// Honor these in the code, to reduce the number of interface calls (even if empty).
func (d *decoder[T]) containerNext(j, containerLen int, hasLen bool) bool {
// return (hasLen && (j < containerLen)) || (!hasLen && !d.d.CheckBreak())
if hasLen {
return j < containerLen
}
return !d.d.CheckBreak()
}
func (d *decoder[T]) mapElemKey(firstTime bool) {
d.d.ReadMapElemKey(firstTime)
d.c = containerMapKey
}
func (d *decoder[T]) mapElemValue() {
d.d.ReadMapElemValue()
d.c = containerMapValue
}
func (d *decoder[T]) mapEnd() {
d.d.ReadMapEnd()
d.depthDecr()
d.c = 0
}
func (d *decoder[T]) arrayElem(firstTime bool) {
d.d.ReadArrayElem(firstTime)
d.c = containerArrayElem
}
func (d *decoder[T]) arrayEnd() {
d.d.ReadArrayEnd()
d.depthDecr()
d.c = 0
}
func (d *decoder[T]) interfaceExtConvertAndDecode(v interface{}, ext InterfaceExt) {
// The ext may support different types for performance e.g. int if no fractions, else float64
// Consequently, best mode is:
// - decode next value into an interface{}
// - pass it to the UpdateExt
var vv interface{}
d.decode(&vv)
ext.UpdateExt(v, vv)
// rv := d.interfaceExtConvertAndDecodeGetRV(v, ext)
// d.decodeValue(rv, nil)
// ext.UpdateExt(v, rv2i(rv))
}
func (d *decoder[T]) fn(t reflect.Type) *decFn[T] {
return d.dh.decFnViaBH(t, d.rtidFn, d.h, d.fp, false)
}
func (d *decoder[T]) fnNoExt(t reflect.Type) *decFn[T] {
return d.dh.decFnViaBH(t, d.rtidFnNoExt, d.h, d.fp, true)
}
// ----
func (helperDecDriver[T]) newDecoderBytes(in []byte, h Handle) *decoder[T] {
var c1 decoder[T]
c1.bytes = true
c1.init(h)
c1.ResetBytes(in) // MARKER check for error
return &c1
}
func (helperDecDriver[T]) newDecoderIO(in io.Reader, h Handle) *decoder[T] {
var c1 decoder[T]
c1.init(h)
c1.Reset(in)
return &c1
}
// ----
func (helperDecDriver[T]) decFnloadFastpathUnderlying(ti *typeInfo, fp *fastpathDs[T]) (f *fastpathD[T], u reflect.Type) {
rtid := rt2id(ti.fastpathUnderlying)
idx, ok := fastpathAvIndex(rtid)
if !ok {
return
}
f = &fp[idx]
if uint8(reflect.Array) == ti.kind {
u = reflect.ArrayOf(ti.rt.Len(), ti.elem)
} else {
u = f.rt
}
return
}
func (helperDecDriver[T]) decFindRtidFn(s []decRtidFn[T], rtid uintptr) (i uint, fn *decFn[T]) {
// binary search. Adapted from sort/search.go. Use goto (not for loop) to allow inlining.
var h uint // var h, i uint
var j = uint(len(s))
LOOP:
if i < j {
h = (i + j) >> 1 // avoid overflow when computing h // h = i + (j-i)/2
if s[h].rtid < rtid {
i = h + 1
} else {
j = h
}
goto LOOP
}
if i < uint(len(s)) && s[i].rtid == rtid {
fn = s[i].fn
}
return
}
func (helperDecDriver[T]) decFromRtidFnSlice(fns *atomicRtidFnSlice) (s []decRtidFn[T]) {
if v := fns.load(); v != nil {
s = *(lowLevelToPtr[[]decRtidFn[T]](v))
}
return
}
func (dh helperDecDriver[T]) decFnViaBH(rt reflect.Type, fns *atomicRtidFnSlice, x *BasicHandle, fp *fastpathDs[T],
checkExt bool) (fn *decFn[T]) {
return dh.decFnVia(rt, fns, x.typeInfos(), &x.mu, x.extHandle, fp,
checkExt, x.CheckCircularRef, x.timeBuiltin, x.binaryHandle, x.jsonHandle)
}
func (dh helperDecDriver[T]) decFnVia(rt reflect.Type, fns *atomicRtidFnSlice,
tinfos *TypeInfos, mu *sync.Mutex, exth extHandle, fp *fastpathDs[T],
checkExt, checkCircularRef, timeBuiltin, binaryEncoding, json bool) (fn *decFn[T]) {
rtid := rt2id(rt)
var sp []decRtidFn[T] = dh.decFromRtidFnSlice(fns)
if sp != nil {
_, fn = dh.decFindRtidFn(sp, rtid)
}
if fn == nil {
fn = dh.decFnViaLoader(rt, rtid, fns, tinfos, mu, exth, fp, checkExt, checkCircularRef, timeBuiltin, binaryEncoding, json)
}
return
}
func (dh helperDecDriver[T]) decFnViaLoader(rt reflect.Type, rtid uintptr, fns *atomicRtidFnSlice,
tinfos *TypeInfos, mu *sync.Mutex, exth extHandle, fp *fastpathDs[T],
checkExt, checkCircularRef, timeBuiltin, binaryEncoding, json bool) (fn *decFn[T]) {
fn = dh.decFnLoad(rt, rtid, tinfos, exth, fp, checkExt, checkCircularRef, timeBuiltin, binaryEncoding, json)
var sp []decRtidFn[T]
mu.Lock()
sp = dh.decFromRtidFnSlice(fns)
// since this is an atomic load/store, we MUST use a different array each time,
// else we have a data race when a store is happening simultaneously with a decFindRtidFn call.
if sp == nil {
sp = []decRtidFn[T]{{rtid, fn}}
fns.store(ptrToLowLevel(&sp))
} else {
idx, fn2 := dh.decFindRtidFn(sp, rtid)
if fn2 == nil {
sp2 := make([]decRtidFn[T], len(sp)+1)
copy(sp2[idx+1:], sp[idx:])
copy(sp2, sp[:idx])
sp2[idx] = decRtidFn[T]{rtid, fn}
fns.store(ptrToLowLevel(&sp2))
}
}
mu.Unlock()
return
}
func (dh helperDecDriver[T]) decFnLoad(rt reflect.Type, rtid uintptr, tinfos *TypeInfos,
exth extHandle, fp *fastpathDs[T],
checkExt, checkCircularRef, timeBuiltin, binaryEncoding, json bool) (fn *decFn[T]) {
fn = new(decFn[T])
fi := &(fn.i)
ti := tinfos.get(rtid, rt)
fi.ti = ti
rk := reflect.Kind(ti.kind)
// anything can be an extension except the built-in ones: time, raw and rawext.
// ensure we check for these types, then if extension, before checking if
// it implementes one of the pre-declared interfaces.
fi.addrDf = true
if rtid == timeTypId && timeBuiltin {
fn.fd = (*decoder[T]).kTime
} else if rtid == rawTypId {
fn.fd = (*decoder[T]).raw
} else if rtid == rawExtTypId {
fn.fd = (*decoder[T]).rawExt
fi.addrD = true
} else if xfFn := exth.getExt(rtid, checkExt); xfFn != nil {
fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext
fn.fd = (*decoder[T]).ext
fi.addrD = true
} else if ti.flagSelfer || ti.flagSelferPtr {
fn.fd = (*decoder[T]).selferUnmarshal
fi.addrD = ti.flagSelferPtr
} else if supportMarshalInterfaces && binaryEncoding &&
(ti.flagBinaryMarshaler || ti.flagBinaryMarshalerPtr) &&
(ti.flagBinaryUnmarshaler || ti.flagBinaryUnmarshalerPtr) {
fn.fd = (*decoder[T]).binaryUnmarshal
fi.addrD = ti.flagBinaryUnmarshalerPtr
} else if supportMarshalInterfaces && !binaryEncoding && json &&
(ti.flagJsonMarshaler || ti.flagJsonMarshalerPtr) &&
(ti.flagJsonUnmarshaler || ti.flagJsonUnmarshalerPtr) {
//If JSON, we should check JSONMarshal before textMarshal
fn.fd = (*decoder[T]).jsonUnmarshal
fi.addrD = ti.flagJsonUnmarshalerPtr
} else if supportMarshalInterfaces && !binaryEncoding &&
(ti.flagTextMarshaler || ti.flagTextMarshalerPtr) &&
(ti.flagTextUnmarshaler || ti.flagTextUnmarshalerPtr) {
fn.fd = (*decoder[T]).textUnmarshal
fi.addrD = ti.flagTextUnmarshalerPtr
} else {
if fastpathEnabled && (rk == reflect.Map || rk == reflect.Slice || rk == reflect.Array) {
var rtid2 uintptr
if !ti.flagHasPkgPath { // un-named type (slice or mpa or array)
rtid2 = rtid
if rk == reflect.Array {
rtid2 = rt2id(ti.key) // ti.key for arrays = reflect.SliceOf(ti.elem)
}
if idx, ok := fastpathAvIndex(rtid2); ok {
fn.fd = fp[idx].decfn
fi.addrD = true
fi.addrDf = false
if rk == reflect.Array {
fi.addrD = false // decode directly into array value (slice made from it)
}
}
} else { // named type (with underlying type of map or slice or array)
// try to use mapping for underlying type
xfe, xrt := dh.decFnloadFastpathUnderlying(ti, fp)
if xfe != nil {
xfnf2 := xfe.decfn
if rk == reflect.Array {
fi.addrD = false // decode directly into array value (slice made from it)
fn.fd = func(d *decoder[T], xf *decFnInfo, xrv reflect.Value) {
xfnf2(d, xf, rvConvert(xrv, xrt))
}
} else {
fi.addrD = true
fi.addrDf = false // meaning it can be an address(ptr) or a value
xptr2rt := reflect.PointerTo(xrt)
fn.fd = func(d *decoder[T], xf *decFnInfo, xrv reflect.Value) {
if xrv.Kind() == reflect.Ptr {
xfnf2(d, xf, rvConvert(xrv, xptr2rt))
} else {
xfnf2(d, xf, rvConvert(xrv, xrt))
}
}
}
}
}
}
if fn.fd == nil {
switch rk {
case reflect.Bool:
fn.fd = (*decoder[T]).kBool
case reflect.String:
fn.fd = (*decoder[T]).kString
case reflect.Int:
fn.fd = (*decoder[T]).kInt
case reflect.Int8:
fn.fd = (*decoder[T]).kInt8
case reflect.Int16:
fn.fd = (*decoder[T]).kInt16
case reflect.Int32:
fn.fd = (*decoder[T]).kInt32
case reflect.Int64:
fn.fd = (*decoder[T]).kInt64
case reflect.Uint:
fn.fd = (*decoder[T]).kUint
case reflect.Uint8:
fn.fd = (*decoder[T]).kUint8
case reflect.Uint16:
fn.fd = (*decoder[T]).kUint16
case reflect.Uint32:
fn.fd = (*decoder[T]).kUint32
case reflect.Uint64:
fn.fd = (*decoder[T]).kUint64
case reflect.Uintptr:
fn.fd = (*decoder[T]).kUintptr
case reflect.Float32:
fn.fd = (*decoder[T]).kFloat32
case reflect.Float64:
fn.fd = (*decoder[T]).kFloat64
case reflect.Complex64:
fn.fd = (*decoder[T]).kComplex64
case reflect.Complex128:
fn.fd = (*decoder[T]).kComplex128
case reflect.Chan:
fn.fd = (*decoder[T]).kChan
case reflect.Slice:
fn.fd = (*decoder[T]).kSlice
case reflect.Array:
fi.addrD = false // decode directly into array value (slice made from it)
fn.fd = (*decoder[T]).kArray
case reflect.Struct:
if ti.simple {
fn.fd = (*decoder[T]).kStructSimple
} else {
fn.fd = (*decoder[T]).kStruct
}
case reflect.Map:
fn.fd = (*decoder[T]).kMap
case reflect.Interface:
// encode: reflect.Interface are handled already by preEncodeValue
fn.fd = (*decoder[T]).kInterface
default:
// reflect.Ptr and reflect.Interface are handled already by preEncodeValue
fn.fd = (*decoder[T]).kErr
}
}
}
return
}